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Abstract—The surging scale of distributed training (DT) incurs
significant communication overhead in datacenters, while a
promising solution is in-network aggregation (INA). It leverages
programmable switches (e.g., Intel Tofino switches) for gradient
aggregation to accelerate the DT. Due to switches’ limited on-chip
memory size, existing solutions try to design the memory sharing
mechanism for INA. This mechanism requires gradients to arrive
at switches synchronously, while network dynamics make it
common for the asynchronous arrival of gradients, resulting in
existing solutions being inefficient (e.g., massive communication
overhead). To address this issue, we propose GOAT, the first-
of-its-kind work on gradient scheduling with collaborative in-
network aggregation, so that switches can efficiently aggregate
asynchronously arriving gradients. Specifically, GOAT first par-
titions the model into a set of sub-models, then decides which
sub-model gradients each switch is responsible for aggregating
exclusively and to which switch each worker should send its sub-
model gradients. To this end, we design an efficient knapsack-
based randomized rounding algorithm and formally analyze the
approximation performance. We implement GOAT and evaluate
its performance on a testbed consisting of 3 Intel Tofino switches
and 9 servers. Experimental results show that GOAT can speed
up the DT by 1.5× compared to the state-of-the-art solutions.

Index Terms—in-network aggregation, gradient scheduling, dis-
tributed training, datacenter network

I. INTRODUCTION

With the increasing complexity of machine learning (ML)
applications, such as computer vision [1], natural language
processing [2] and recommender systems [3], the scale of ML
tasks is growing explosively. In practice, distributed training
(DT) [4], consisting of multiple workers and parameter servers
(PS), is proposed to meet the needs for training large-scale
ML tasks. In DT, workers train deep neural network (DNN)
models locally and send gradients to the PS(s) for aggregation.
After that, the PS(s) will send the aggregated gradients to
workers. Due to a large volume of exchanged traffic during
distributed training, communication overhead has become the
main bottleneck [5, 6, 7, 8]. For example, for a DT task
training BERT on 10Gbps links, 67% of the training time is
occupied for communication [6].

Triggered by the recent rise of programmable networking
[9], in-network aggregation (INA) [5, 6, 10, 11] has been
proposed as a promising solution to alleviate the communica-
tion bottleneck. Instead of implementing aggregation purely in

the PS(s), INA utilizes programmable switches (e.g., P4-based
[12]) to aggregate gradients within the network. Specifically,
workers send gradients over the network, where programmable
switches can aggregate gradients from multiple workers and
send only the aggregated result to the PS. By doing so, INA
helps to reduce the communication overhead from workers
to the PS(s), increasing training throughput and speeding up
distributed training [10].

The major challenge of INA is that programmable switches
only have limited on-chip memory. A typical switch has tens
of MBs memory size, while the gradient size of DNN models
could be hundreds to thousands of MBs [6]. One intuitive
solution is to increase the on-chip memory size directly. But
it requires chip modification and raises the cost significantly.
Alternatively, TEA [13] proposes the idea of extending the
switch memory with external server memory. However, it
does not consider the characteristics of INA workload (e.g.,
the massive throughput demands) and will introduce a new
bottleneck on the bandwidth towards the external memory.

To overcome the limitation of switch memory, existing
INA solutions [5, 6, 14] design the complex memory sharing
mechanism to enable gradient aggregation with programmable
switches. However, this kind of mechanism could be easily
disturbed by synchronization delay and worker stragglers [14].
For example, ATP [5] partitions the memory into isolated
units, and each gradient fragment (a set of gradient elements)
will be aggregated in a memory unit. Since the gradient
size is larger than the size of programmable switch memory,
one memory unit may be responsible for storing multiple
gradient fragments. To guarantee the training correctness, pro-
grammable switches can not aggregate asynchronously arriv-
ing gradient fragments in the same memory unit. Instead, these
fragments are forwarded directly to the PS, neglecting the
benefit of in-network aggregation (see Sec. II-A for details).

To deal with this issue, some works [5, 6] propose maintain-
ing synchronization among workers. However, we argue that
it will require considerable effort to keep the workers synchro-
nized due to network dynamics. For instance, ATP [5] adopts
ACK-based congestion control to modify the sending window
of workers. However, it can not synchronize the pace of
workers in time. So there still exists a considerable number of
asynchronously arriving packets, leading to high aggregation
overheads in the PS. Since network dynamics are common in979-8-3503-9973-8/23/$31.00 © 2023 IEEE
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datacenters [15], it is necessary to design alternative solutions
to perform efficient in-network aggregation.

We find that the above solutions try to optimize memory uti-
lization for each programmable switch individually, incurring
inefficient aggregation in asynchronous scenarios. In practice,
one model can be divided into a set of sub-models (e.g., model
layers), whose gradient will be aggregated independently [16].
Our key idea is to schedule sub-model gradients to multiple
switches for collaborative in-network aggregation. This makes
programmable switches possible to store all gradients and
aggregate asynchronously arriving gradients.

To this end, this paper proposes GOAT, which schedules
sub-model gradients to multiple programmable switches for
collaborative in-network aggregation. Specifically, GOAT si-
multaneously decides: (1) which sub-model gradients each
programmable switch is responsible for aggregating exclu-
sively and (2) to which programmable switches (or the PS)
each worker should send these sub-model gradients. By doing
these, GOAT can collaboratively utilize the on-chip memory of
multiple switches and retain the efficiency of INA. However,
it is non-trivial to realize GOAT. On the one hand, we
utilize multiple programmable switches to aggregate gradi-
ents, thereby needing to balance the benefits of in-network
aggregation and the routing costs of gradients to switches.
On the other hand, the in-network aggregation will change
the total amount of forwarded traffic, making existing routing
methods [17] ineffective. Therefore, it is challenging to design
an efficient gradient scheduling scheme with collaborative in-
network aggregation to mitigate the communication bottleneck
of DT. The main contributions of this paper are as follows:

1) We design GOAT, the first-of-its-kind work which per-
forms gradient scheduling with collaborative in-network
aggregation to efficiently aggregate asynchronously arriv-
ing gradients and speed up the distributed training.

2) We formulate the problem of Gradient Scheduling for In-
Network Aggregation (GINA) and prove its NP-Hardness.
We present a knapsack-based randomized rounding al-
gorithm, called KRGS, to solve this problem. KRGS
achieves the approximation factor of O(log |S|), where
|S| is the number of programmable switches in the
network. Under a proper assumption, the bound can be
tightened to 4.

3) We prototype GOAT with 3 Intel Tofino switches. We use
both testbed experiments and simulations to demonstrate
the effectiveness of GOAT. The results show that GOAT
dramatically reduces the communication overhead by
81.2% and speeds up the distributed training by 1.5×
compared with the state-of-the-art solutions.

II. MOTIVATION AND GOAT OVERVIEW

A. Memory Sharing Scheme

Due to the limited size of switch memory, existing solutions
[5, 6, 14] adopt the memory sharing scheme to conduct
in-network aggregation. In particular, the switch memory is
divided into N memory units, each of which can store a part

Incoming gradient fragments

Switch

Mem 2Mem 2

Mem 1Mem 1N+1 1

N+2 2
M 3 2 1

Mem NMem NN2N

mod N

Fig. 1: Illustration of memory sharing scheme: the switch memory
can be divided into N memory units. Correspondingly, a gradient
can be partitioned into M gradient fragments, each assigned to a
memory unit via hash function for aggregation. Since the size of
switch memory is usually smaller than the size of gradient, multiple
gradient fragments will be hashed to the same memory unit.

of gradients (i.e., gradient fragments) at a time, as illustrated
in Fig. 1. Correspondingly, the gradient is divided into M
fragments, each having the same size as the memory unit.
When one fragment arrives at a switch, it will be hashed
to a specific unit according to its index (e.g., fragment i
will be hashed to memory unit i%N ). Given that the switch
memory size is usually smaller than the gradient size (i.e.,
N<M ), multiple gradient fragments will be hashed to the same
memory unit. Therefore, asynchronously arriving fragments
may encounter hash collision, degrading the throughput of in-
network aggregation.

As mentioned above, each memory unit has room for only
one fragment. Once a unit is occupied, it is unavailable to
other fragments until it is released (i.e., finish aggregating the
current fragment). As a result, fragments encountered hash
collision will be directly forwarded to the PS. In practice, it
is common that gradients arrive at switches asynchronously
because of network dynamics. Therefore, the memory sharing
scheme will cause a significant volume of gradient fragments
to be aggregated in the PS without fully utilizing the benefits
of in-network aggregation.

B. A Motivating Example

Given that ATP is a popular INA solution with memory
sharing, this section presents a motivating example to demon-
strate the pros and cons of both ATP and GOAT. Consider a DT
task with 1 PS, 4 workers (i.e., W1-W4) and 3 programmable
switches (i.e., S1-S3), as shown in Fig. 2(a). For simplicity, we
assume that worker Wi needs to send the gradient, divided into
3 fragments (i.e., Ai, Bi and Ci) to the PS, and each switch’s
memory can store only one gradient fragment at a time.

We first introduce ATP, which performs the first-come-
first-served strategy for gradient fragments allocated to the
same memory unit [5]. In ATP, the near-worker switch needs
to aggregate all gradients of connected workers and the
near-PS switch needs to aggregate all gradients of down-
stream switches. For the synchronous scenario, the frag-
ments of W1 and W2 arrive at S1 with the sequence of
{A1, A2, B1, B2, C1, C2}. S1 first aggregates A1 with the
incoming fragment A2 and outputs the aggregated fragment
A1,2. Then it aggregates B1 with B2 and outputs B1,2. Finally
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(c) GOAT

Fig. 2: The left subplot shows the network topology of a distributed training task containing 1 PS, 4 workers (i.e., W1-W4) and 3 programmable
switches (i.e., S1-S3). Worker Wi needs to send 3 gradient fragments (i.e., Ai, Bi and Ci) to the PS. Each programmable switch can aggregate
one gradient fragment at a time. In the middle and right subplots, we present the sequence of incoming and output fragments of programmable
switches. We use A1,2 to denote the aggregated fragment of A1 and A2. The middle subplot shows that S3 outputs 7 gradient fragments to
the PS and the right subplot shows that S3 outputs 3 gradient fragments to the PS, which is optimal.

it aggregates C1 with C2 and outputs C1,2. S2 and S3 have
similar processes.

However, due to network dynamics, the traffic of W1 and
W2 may arrive at S1 asynchronously, where the incoming frag-
ment sequence of S1 is {A1, B1, C1, A2, B2, C2}, as shown
in Fig. 2(b). In this scenario, S1 first stores A1, then directly
forwards the subsequent fragments B1 and C1 to S3 because
these fragments do not match the stored fragment A1. Finally,
the output fragment sequence of S1 is {B1, C1, A1,2, B2, C2}.
So does S2. For S3, it first receives and aggregates fragment
B1 with the incoming fragment B3 and then buffers the
intermediate aggregation result B1,3 in its memory. Since
S3 can not aggregates the subsequent fragments C1 and
C3 with fragment B1,3, it directly sends C1 and C3 to
the PS. At last, the PS will receive 7 gradient fragments,
i.e., {C1, C3, A1,2, A3,4, B,C2, C4}. To handle asynchrony,
workers regard the updated fragments from the PS as an ACK
packet in ATP. Once a worker receives multiple out-of-order
ACK packets, it regards that unreceived out-of-order packets
have been lost. As a result, it will retransmit unreceived
packets and modify the window size for synchronization.
However, we argue that this method can not prevent massive
traffic aggregated by the PS in time.

Since one programmable switch can not store the entire
gradient, we intend to utilize multiple programmable switches
to aggregate gradients. Specifically, we schedule gradient
fragments A, B and C to switches S1, S2 and S3, respectively.
In this way, workers W1-W4 need to send fragments A1-
A4 to switch S1, whose incoming fragment sequence is
{A1, A2, B1, B2, C1, C2, A3, A4}, as shown in Fig. 2(c). S1

will aggregate all gradient fragments Ai and forward the
other fragments to the corresponding switches, i.e., outputs
{B1, C1, B2, C2, A}. For S2, in addition to all fragments of
W3 and W4, it also receives fragments B1 and B2 from S1

and sends the aggregated fragment B along with the other
fragments. The aggregation process of S3 is similar to that
of S1 and S2. As a result, the PS only receives 3 fragments,
i.e., {C,A,B}. This example shows that our scheme reduces
the aggregation overhead of the PS by 57% (from 7 to 3)
and the total communication overhead by 24% (from 17 to
13) compared with ATP. Thus, we conclude that scheduling

Workers

(3). Gradient 
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Match (4). Gradient 
Aggregation

Programmable  Switches

Unmatch

Querying

Control Plane

DNN Model Partition Network Resource

(1). Policy Calculation (Sec. III)

Data Plane

The PS

(2).Model Partition

Network Controller

(5).Global 
AggregationModel Sub-models

Publishing

Fig. 3: System overview of GOAT. GOAT is composed of two
parts. The control plane is responsible for determining the gradient
scheduling policy. The data plane is responsible for collaborative in-
network aggregation.

gradients to perform collaborative in-network aggregation is
more efficient than utilizing memory sharing mechanisms
in asynchronous scenarios. Motivated by this example, we
design the scheme of gradient scheduling with collaborative
in-network aggregation, called GOAT.
Discussion. The above example illustrates the idea of gradi-
ent scheduling with collaborative in-network aggregation. In
practice, we can partition the model into sub-models with
existing methods such as [18], then schedule corresponding
gradients to multiple switches for aggregation. Moreover, we
intend to utilize a small number of programmable switches
to aggregate a whole model collaboratively. For example, the
gradient size of ResNet-50 [1] is 98MB and the memory
size of Intel Tofino 2 [19] is 64MB. So it only takes 2
switches to aggregate ResNet-50’s gradients. For large models,
we can co-exist with methods such as gradient quantization
[20] to reduce the gradient size. Besides, considering that
programmable switches are becoming popular in datacenters,
we can aggregate large models with more switches if needed.

C. Overview of GOAT

Fig. 3 depicts the overview of GOAT, including the control
plane and the data plane. Specifically, GOAT’s control plane
leverages the collected network information and predefined
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model partition to determine the gradient scheduling policy,
i.e., to which programmable switches (or the PS) each worker
should send its sub-model gradients. GOAT’s data plane con-
sists of workers, programmable switches and the PS. Workers
divide models into a sub-model set and send gradients of sub-
models to the PS. Programmable switches filter and aggregate
the received gradient fragments. The PS is responsible for
global aggregation.

Note that the core of GOAT is to determine the gradient
scheduling policy, which will be described in Section III. For
the data plane, we can implement aggregation operations based
on existing solutions [5, 6]. Due to space limitations, we omit
the design details of the data plane and present the workflow
in Sec. II-D.

D. Workflow of GOAT

Fig. 3 also describes the workflow of GOAT, which mainly
consists of 5 steps as follows.

1) Policy calculation: The controller determines the gradient
scheduling policy and publishes it to the data plane.
Note that, the gradient scheduling policy is published
only once, and the data plane will iteratively execute the
following 4 steps in the DT task. In the following, we use
aggregation nodes to represent programmable switches
and the PS, since they will both aggregate gradients.

2) Model partition: Workers partition the model into sub-
models and label the gradient fragments of sub-models
according to the gradient scheduling policy. Each frag-
ment will be identified by the tuple of <aggregation
node id, sub-model id, fragment id>. The aggregation
node id denotes the assigned aggregation node. The sub-
model id represents the index of the sub-model. The
fragment id represents the index of gradient fragments
of the belonging sub-model.

3) Gradient filtering: Once a gradient fragment arrives, the
programmable switch filters the fragment by matching
the fragment’s aggregation node id with its id. If they
match, the programmable switch will perform gradient
aggregation. Otherwise, the switch will directly forward
the fragment according to the forwarding table.

4) Gradient aggregation: The programmable switches allo-
cate the gradient fragments to specific memory units via
HASH (<aggregation node id, sub-model id, fragment
id>) mod memory size for aggregation.

5) Global aggregation: The PS collects all gradient frag-
ments (aggregated by programmable switches and di-
rectly sent from workers) and performs aggregation.

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

A. System Model

Parameter Server Architecture. A parameter server archi-
tecture consists of the parameter server (PS) α and a worker
set W =

{
w1, w2, . . . , w|W |

}
. Workers train models locally

and send gradients to the PS for global aggregation.
DNN Model Training. A DNN model is partitioned into a
set of sub-models, whose gradient can be denoted as G =

{
g1, g2, . . . , g|G|

}
. Each sub-model gradient has the size of

b(g), and is aggregated independently.
Programmable Network. We consider a datacenter contain-
ing four elements: a compute node set, a programmable switch
set, a link set and a network controller.

1) Compute nodes host workers and the PS for model
training and global aggregation.

2) Programmable switches are responsible for gradient fil-
tering and aggregation. Let S =

{
s1, s2, . . . , s|S|

}
denote

the programmable switch set. Each switch s has a limited
on-chip memory with the size of B(s) to store gradients.

3) Compute nodes and programmable switches are con-
nected via a set of links. We define the distance of two
nodes as the number of links in the shortest path of
two elements. Let Dw(s) and Ds(α) denote the distance
of worker w to aggregation node s ∈ S ∪ {α} and
the distance of programmable switch s to the PS α,
respectively.

4) The network controller (e.g., the PS) can be a logical con-
troller used to manage the whole network, e.g., deciding
aggregation nodes of sub-model gradients.

B. Problem Formulation

This section describes the Gradient Scheduling for In-
Network Aggregation (GINA) problem. The key step of GINA
is determining to which aggregation nodes each worker should
send its sub-model gradients. Thus, let ysw,g ∈ {0, 1} represent
whether aggregation node s aggregates worker w’s gradient g,
or not. Let xs

g ∈ {0, 1} represent whether sub-model gradient
g is aggregated in aggregation node s, or not. The problem
can be formulated as follows.

min
∑
g∈G

(
∑
w∈W

∑
s∈S∪{α}

ysw,g ·Dw(s) +
∑
s∈S

xs
g ·Ds(α)) · b(g)

S.t.



∑
s∈S∪{α}

xs
g ≥ 1, ∀g ∈ G∑

s∈S∪{α}
ysw,g = 1, ∀w ∈ W, g ∈ G

ysw,g ≤ xs
g, ∀w ∈ W, g ∈ G, s ∈ S ∪ {α}∑

g∈G

xs
g · b(g) ≤ B(s), ∀s ∈ S

xs
g ∈ {0, 1}, ∀g ∈ G, s ∈ S ∪ {α}

ysw,g ∈ {0, 1}, ∀w ∈ W, g ∈ G, s ∈ S ∪ {α}
(1)

The first set of inequalities denotes that for each sub-model
gradient, at least one aggregation node is responsible for
aggregation. The second set of equations represents that for
each worker, each sub-model gradient should be aggregated in
one aggregation node. The third set of inequalities represents
that each gradient can only be aggregated in the designated
aggregation node. The fourth set of inequalities means the
programmable switch memory constraint. Considering that
communication is the main bottleneck of DT, our goal is
to minimize the communication overhead in the network,
including the non-aggregated gradients sent from workers to
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aggregation nodes and the aggregated gradients sent from
programmable switches to the PS.

Theorem 1: The GINA problem is NP-hard.
Proof: We prove the NP-hardness by showing that the

generalized assignment problem [21] is a special case of
GINA. Due to limited space, we omit it here.

C. Algorithm Design

Supposing that programmable switches do not aggregate
gradients, the total size of transferred gradients can be cal-
culated by∑

w∈W

∑
g∈G

∑
s∈S∪{α}

ysw,g · (Dw(s) +Ds(α)) · b(g) (2)

To minimize the total size of transferred gradients in the
network, we need to maximize the traffic of aggregated
gradients. By subtracting Eq. (2) from the objective of Eq. (1),
we can obtain the traffic of aggregated gradients as follows:∑

g∈G

∑
s∈S

(
∑
w∈W

ysw,g − xs
g) ·Ds(α) · b(g) (3)

Since the distance from the PS α to itself is zero (i.e.,
Dαα = 0), we remove

∑
w∈W

∑
g∈G

yαw,m in Eq. (3). As a result,

we can convert Eq. (1) into maximizing the traffic amount of
in-network aggregation as follows.

max
∑
g∈G

∑
s∈S

(
∑
w∈W

ysw,g − xs
g) ·Ds(α) · b(g)

S.t.



∑
s∈S∪{α}

xs
g ≥ 1, ∀g ∈ G∑

s∈S∪{α}
ysw,g = 1, ∀w ∈ W, g ∈ G

ysw,g ≤ xs
g, ∀w ∈ W, g ∈ G, s ∈ S ∪ {α}∑

g∈G

xs
g · b(g) ≤ B(s), ∀s ∈ S

xs
g ∈ {0, 1}, ∀g ∈ G, s ∈ S ∪ {α}

ysw,g ∈ {0, 1}, ∀w ∈ W, g ∈ G, s ∈ S ∪ {α}
(4)

We propose a knapsack-based randomized rounding algo-
rithm to solve the converted GINA problem. Our algorithm
consists of three steps. The first step relaxes Eq. (4) to a linear
program by replacing {xs

g, y
s
w,g} with their fractional versions.

We can solve it with a linear program solver (e.g., PULP [22])
and the optimal solution is denoted as {x̃s

g, ỹ
s
w,g}. After that,

we determine the set of assigned programmable switches for
each sub-model gradient based on the optimal solution. For

each gradient g, we first calculate k(g) =

⌊∑
s∈S

x̃s
g

⌋
, which is

the required number of programmable switches to aggregate
gradient g. Then we put variables x̃s

g (∀g ∈ G) into k(g)
knapsacks with min-max sum. For each knapsack a, sub-model
gradient g will be scheduled to switch s with probability

x̃s
g

Sa
,

where Sa is the sum of xs
g in knapsack a. We denote the set of

assigned switches for sub-model gradient g as S(g). Finally,
for each worker w’s gradient g, we calculate the probabilities

Algorithm 1 KRGS: Knapsack-based Randomized Rounding
for Gradient Scheduling

1: Step 1: Solving the Relaxed Problem
2: Construct a LP by replacing with xs

g, y
s
w,g ∈ [0, 1].

3: Obtain the optimal solution {x̃s
g, ỹ

s
w,g}.

4: Step 2: Assigning Switches for Sub-Model Gradients
5: for each sub-model gradient g ∈ G do

6: Let k(g) =
⌊∑
s∈S

x̃s
g

⌋
.

7: Put xs
g (∀s ∈ S) into k(g) knapsacks with min-max

sum.
8: for each knapsack a do
9: Let A denote the variables in knapsack a.

10: Calculate Sa =
∑

x̃s
g∈A x̃s

g .

11: Choose s for x̃s
g ∈ A with probability

x̃s
g

Sa
.

12: Set x̂s
g = 1 for chosen aggregation node s.

13: Let S(g) = {s ∈ S|x̂s
g = 1} denote the set of switches

responsible for aggregating sub-model gradient g.
14: Step 3: Determining Aggregation Nodes for Workers’

Sub-Model Gradients
15: for each worker w ∈ W do
16: for each gradient g ∈ G do
17: Set the probabilities of selecting switch s ∈ S(g)

and the PS to pn(s) =
ỹs
w,g

x̃s
g

and pn(α) = 1 −∑
s∈S(g) pn(s), respectively.

18: Select an aggregation node s ∈ S ∪ {α} with the
probability of pn(s).

of selecting switch s ∈ S(g) to aggregate as pn(s) =
ỹs
w,g

x̃s
g

and
of selecting the PS as pn(α) = 1−

∑
s∈S(g) pn(s). Then we

select an aggregation node s ∈ S ∪ {α} with the probability
of pn(s). The proposed algorithm is summarized in Alg. 1.

D. Performance Analysis

Theorem 2: Alg. 1 can guarantee that for each sub-model
gradient, at least one aggregation node will be assigned.

Proof: We consider two situations according to whether
the PS is selected as the optimal solution, or not. We first
consider the situation that worker w’s gradient g is not
scheduled to the PS, i.e., x̃α

g = 0. According to the first set of
inequalities in Eq. (4) and the definition of k(g), we have:

1 ≤ k(g) =

 ∑
s∈S∪{α}

x̃s
g

 =

⌊∑
s∈S

x̃s
g

⌋
≤

∑
s∈S

x̃s
g (5)

Each gradient chooses one programmable switch from k(g)
knapsacks. Thus, there are k(g) switches selected.

We then consider the situation that worker w’s gradient g
is scheduled to the PS, i.e., x̃α

g = 1. We have:

0 ≤ k(g)− 1 =

⌊∑
s∈S

x̃s
g

⌋
≤

∑
s∈S

x̃s
g (6)

According to line 17 of Alg. 1, even if each gradient does not
choose one switch for aggregation, it will be aggregated in the
PS (pαn = 1−

∑
s∈S(g)

pn(s) = 1).
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As a result, we can guarantee that for each sub-model
gradient, there is at least one node for aggregation.

Theorem 3: Alg. 1 guarantees that for each worker, each
sub-model gradient is aggregated in one aggregation node.

Proof: According to line 17 of Alg. 1, for each worker’s
sub-model gradient, the sum of probabilities of selecting
aggregation nodes is:∑

s∈S(g)

pn(s) + (1−
∑

s∈S(g)

pn(s)) = 1,∀w ∈ W (7)

Eq. (7) shows that, each sub-model gradient will select one
aggregation node. Therefore, the theorem holds.

Lemma 4: For each knapsack a, the lower bound of Sa is
greater than 0.5.

Proof: By the definition of k(g), we have:∑
s∈S

x̃s
g = k(g) + ε, 0 < ε < 1 (8)

Then, we define two sets as follows:{
X1 =

{
x̃s
g|0.5 < x̃s

g < 1, s ∈ S
}

X2 =
{
x̃s
g|0 < x̃s

g < 0.5, s ∈ S
} (9)

Supposing that we select two variables denoted as x1
m and

x2
m from X2 randomly. The value of x3

m = x1
m+x2

m is either
greater than 0.5 or less than 0.5. If x3

m > 0.5, then X1 =
X1 + x3

m and X2 = X2 −
{
x1
m, x2

m

}
. Otherwise, X2 = X2 −{

x1
m, x2

m

}
+x3

m. We repeat the above operations until |X2| ≤
1. Supposing that there is one variable in X2, there are at most
k(g) − 1 variables in X1. According to the definition of X1,
the value of variables in X1 are all less than 1. Thus, we have:∑

x̃s
g∈X1

x̃s
g < k(g)− 1 (10)∑

x̃s
g∈X2

x̃s
g < 0.5 (11)

Combining Eq. (10) and Eq. (11), we have:∑
s∈S

x̃s
g < k(g)− 0.5 (12)

However, Eq. (12) contradicts Eq. (8). Thus, there are at
least k(g) variables in X1. Since we put variables to knapsacks
with the min-max sum, the sum of knapsack a must be greater
than 0.5.

Lemma 5: Chernoff Bound [23]: Given n independent
variables: y1, y2, . . . , yn,∀yi ∈ [0, 1]. Let τ = E [

∑n
i=1 yi].

Then, Pr [
∑n

i=1 yi ≥ (1 + ϱ)τ ] ≤ e
−ϱ2τ
2+ϱ , where ϱ is an

arbitrary positive value.
Theorem 6: Alg. 1 will not exceed the memory constraint

of programmable switches by an approximation factor of
O(log |S|).

Proof: We first prove that for each gradient g ∈ G and
programmable switch s ∈ S, we have E

[
x̂s
g

]
≤ 2 · x̃s

g .
According to Alg. 1, we choose switch s with the probability
of

x̃s
g

Sa
, thereby E

[
x̂s
g

]
=

x̃s
g

Sa
. According to Lemma 4, we can

obtain E
[
x̂s
g

]
=

x̃s
g

Sa
≤ 2 · x̃s

g .
Then we define δsm = x̂s

g · b(g) as the size of gradient g
aggregated in the programmable switch s. Since each gradient
g selects the programmable switch s independently, we have
E
[∑

g∈G δs

]
=

∑
g∈G

x̃s
g

Sa
· b(g). By the definition of δs, we

can get the expected workload of each programmable switch
s ∈ S:

E

∑
g∈G

δs

 =
∑
g∈G

x̃s
g

Sa
· b(g)

≤ 2 ·
∑
g∈G

x̃s
g · b(g) ≤ 2 ·B(s) (13)

Let Bmin denote the minimum memory capacity among
the programmable switches. We then define a constant value
ν = min{ 2·Bmin

b(g) ,∀g ∈ G} to normalize the expected on-chip
memory workload. Combining Eq. (13) and the definition of
ν, we have: 

δs·ν
2·B(s) ∈ [0, 1]

E

[ ∑
g∈G

δs·ν
2·B(s)

]
≤ ν

(14)

By applying Lemma 5, we have:

Pr

∑
g∈G

δs · ν
2 ·Bs

≥ (1 + ϱ) · ν

 ≤ e
−ϱ2ν
2+ϱ

⇒ Pr

∑
g∈G

δs
2 ·Bs

≥ (1 + ϱ)

 ≤ e
−ϱ2ν
2+ϱ (15)

We want to find ϱ for which the probability upper bound
above becomes very small. Specifically, we assume that:

Pr

∑
g∈G

δs
2 ·Bs

≥ (1 + ϱ)

 ≤ e
−ϱ2ν
2+ϱ ≤ 1

|S|
(16)

which means that the upper bound approaches quickly to zero
as the network grows. By solving Eq. (16), we have:

ϱ ≥
log |S|+

√
log2 |S|+ 8ν log |S|

2ν
, (|S| ≥ 2)

⇒ ϱ ≥ log |S|
ν

+ 2, (|S| ≥ 2) (17)

In practice, the on-chip memory size of Intel Tofino 2 is
64MB [19]. According to the default model partition of BERT
in PyTorch [24], the average size of sub-model gradients is
2MB, i.e., b(g) = 2. Under this setting, ν = 2·64

2 ≈ 64. We
assume the number of programmable switches in a datacenter
is |S| = 20, so 3·log |S| ≈ 3.9. Combining these assumptions,
we can obtain that ν ≥ 3 · log |S|. As a result, we have:

ϱ ≥
log |S|+

√
log2 |S|+ 8ν log |S|

2ν

⇒ ϱ ≥
log |S|+

√
(2ν − log |S|)2 + 12ν log |S| − 4ν2

2ν

⇒ ϱ ≥
log |S|+

√
(2ν − log |S|)2
2ν

⇒ ϱ ≥ 1 (18)

We can draw that the approximate factor of the memory
constraint is 2 · (ϱ + 1) = 2·log|S|

ν + 6 = O(log |S|). Under
the proper assumption (i.e., ν ≥ 3 · log |S|), the bound can be
tightened to 4.

Theorem 7: After rounding, the communication overhead
will not exceed the fractional solution by an approximate
factor of O(log |W · S|).

Proof: We first prove that for each worker w’s gra-
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dient g ∈ G and programmable switch s ∈ S, we have
E
[
ŷsw,g

]
≤ 2 · ỹsw,g . For each worker w, we choose the switch

s to aggregate gradient g with the probability of
ỹs
w,g

x̃s
g

, where
switch s must be assigned for aggregating gradient g. Thus,
we have E

[
ŷsw,g

]
=

ỹs
w,g

x̃s
g

· x̃s
g

Sa
. According to Lemma 4, we

can obtain E
[
ŷsw,g

]
=

ỹs
w,g

Sa
≤ 2 · ỹsw,g . Then we can analyze

the approximation ratio performance based on the randomized
rounding method. Since the proof process is similar to that of
Theorem 6 and the space is limited, we omit it here.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Metrics. We adopt the following metrics for performance
comparison: (1) training throughput; (2) test accuracy; (3)
per epoch time; (4) communication time; (5) aggregation
overhead of the PS; (6) in-network aggregation amount; and
(7) communication overhead.

We measure the number of processed samples (e.g., images)
per second as training throughput and compute the ratio
between the number of the samples correctly predicted by
the model to the number of all samples in the test set as
test accuracy. Then, we record the average duration between
two consecutive epochs as per epoch time. In each epoch, we
measure the average duration from the time a worker sends the
gradient until the time that the worker finishes receiving the
updated model as communication time. Besides, we use iftop
[25] to monitor the total traffic amount of the PS, denoted
as aggregation overhead of the PS. We calculate the size of
gradients aggregated in programmable switches by subtracting
the aggregation overhead of the PS from the total size of
models as in-network aggregation amount. We sum the traffic
size of gradients through links as communication overhead.
Benchmarks. We compare GOAT with three benchmarks.
The first benchmark is a communication scheduling scheme
without considering in-network aggregation, called Geryon
[26]. Geryon computes the shortest path from each worker
to the PS under resource constraints to transfer gradients. The
second one, called ATP [5], performs in-network aggregation
at top-of-rack programmable switches. For fairness, we let
each worker sends the gradient to the PS via the shortest
paths, where the gradient is aggregated in the first encountered
aggregation node with available memory capacity. The last
solution is the latest INA solution, called ESA [14]. It designs
a priority-based preemption mechanism for asynchronously
arriving gradients, where a gradient fragment with a high
priority will evict the low priority fragment at the memory.

B. Testbed Settings and Results

Settings. We build the testbed with 3 Wedge100BF-32x pro-
grammable switches and 9 servers. The testbed topology is
similar to the examples in Fig. 2(a), where 1 switch connects
with 1 server hosting the PS and the other 2 switches connect
with 4 servers hosting workers, respectively. Specifically, each
switch features an Intel Tofino chip with Software Develop-
ment Environment 9.3.1 and has the available memory of
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Fig. 4: Training Throughput vs. Models

∽20MB [12]. Each server has an NVIDIA GeForce RTX
3090, a 22-core Intel Xeon 6152 processor, and a Mellanox
ConnectX-6 100G dual-port NIC. All servers run Ubuntu
18.04 with CUDA 11.3 and install the NIC driver with Mel-
lanox driver OFED 5.5-1.0.3.2. Moreover, all programmable
switches and servers are connected via 100Gbps links.
Workloads. We train two DNN models [1]: ResNet-18 with
a size of 44MB and ResNet-50 with a size of 98MB on the
Cifar-100 dataset [27]. Specifically, the dataset contains 60000
images (50000 for training and 10000 for testing), labeled in
100 classes. Similar to [6], we set the batch size to 64 and
perform 200 training epochs for each DT task by default.
Implementation. We implement the KRGS algorithm in the
control plane and calculate the gradient scheduling policy via
PuLP [22], where the sub-model set is defined by the default
model partition of PyTorch [24]. We publish the policy by
installing the corresponding entries to programmable switches
with Barefoot Runtime Interface (BRI). In the data plane, we
implement the collaborative in-network aggregation with 583
LoCs of P4 in programmable switches. Specifically, we use
16384 registers for gradient aggregation and 2 match-action
tables (MATs) for gradient filtering. We run PyTorch on each
server to perform DT tasks. We obtain the parameter array of
models by invoking the parameters_to_vector of PyTorch
and partition the array into a set of gradient fragments. In the
communication backend, we encode the gradient fragments
into self-defined packet headers for in-network processing.
Similar to [5, 6], each gradient fragment contains 64 elements.
(Exp#1) Overall training performance. We measure the
overall performance of DT tasks by evaluating the training
throughput and test accuracy. The evaluation results are shown
in Figs. 4-6. In Fig. 4, we set the number of workers to
8 and run several popular models: ResNet-18, ResNet-34,
ResNet-50, DenseNet-121, DenseNet-169 and DenseNet-201
[1, 28]. The experimental results show that GOAT can obtain
the highest training throughput among these benchmarks. For
example, GOAT achieves a throughput of 276 images/s on
average when training DenseNet-121, while ESA, ATP and
Geryon obtain throughputs of 240 images/s, 219 images/s and
180 images/s, respectively. To save space, we only conduct a
detailed performance comparison of all solutions with ResNet-
18 and ResNet-50 in the following. In Fig. 5, we increase
the number of workers from 4 to 16 with an increment of 4.
The experimental results show that GOAT always achieves
the highest training throughput as the number of workers
increases. For example, given 16 workers in Fig. 5(a), the
training throughputs of GOAT, ESA, ATP and Geryon are 931,
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Fig. 6: Test Accuracy vs. Training Time
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Fig. 7: Per Epoch Time vs. No. of Workers
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Fig. 8: Communication Time vs. No. of Workers
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Fig. 9: Aggregation Overhead of the PS vs. No. of Workers

585, 512 and 465 images/s, respectively. In Fig. 6, we further
record the test accuracy versus training time for the DT task
containing 16 workers. It shows that GOAT takes the least
time to complete the training task and achieves a similar test
accuracy compared with other alternatives. For example, given
ResNet-50 in Fig. 6(b), GOAT first reaches an accuracy of
0.7896 in 802.4s while the times of ESA, ATP and Geryon are
1208.48s, 1312.6s and 1416.9s, respectively. The results show
that GOAT can speed up distributed training by 1.34×, 1.39×
and 1.77×, compared with ESA, ATP and Geryon, respec-
tively. The reason is that GOAT can aggregate more gradients
in programmable switches through collaborative in-network
aggregation, reducing the total communication overhead.
(Exp#2) Comparison on training time. This set of evalua-
tions compares the training time performance of different solu-
tions by varying the number of workers. Fig. 7 shows that, as
the number of workers increases, the per epoch time increases
too. Under the fixed number of workers, GOAT obtains the
least per epoch time among all solutions. Given 16 workers in
Fig. 7(a), the per epoch times of GOAT, ESA, ATP and Geryon
are 2.2s, 3.5s, 4s and 4.65s, respectively. We further estimate
the communication time of each epoch. In Fig. 8(a), when the
number of workers is 16, the communication times of GOAT,
ESA, ATP and Geryon are 0.36s, 1.34s, 1.64s and 1.95s,
respectively. Thus, by decreasing the communication time,
GOAT reduces per epoch time by 37.14%, 45% and 52.7%

compared with ESA, ATP and Geryon, respectively. Note
that, each epoch consists of local training, communication and
global aggregation. Our method does not optimize the local
training time but can co-exist with solutions decreasing local
training time if needed.
(Exp#3) Comparison on aggregation overhead of the PS.
This set of evaluations estimates the average aggregation
overhead of the PS in each epoch. Fig. 9 shows that GOAT
can consistently achieve the least aggregation overhead of
the PS compared with other alternatives. For example, given
16 workers in Fig. 9(a), the aggregation overheads of the
PS of GOAT, ESA, ATP and Geryon are 44MB, 167.2MB,
198MB and 704MB, respectively. As a result, GOAT reduces
the aggregation overhead of the PS by 73.6%, 77.8% and
93.8% compared with other benchmarks. The reason is that in
Geryon all workers’ gradients are sent to the PS without in-
network aggregation. Besides, we find that workers’ gradient
packets arrive at switches asynchronously in real DT tasks.
According to experimental results, in a task with 16 workers,
the asynchronicity of the PS receiving gradients can reach up
to 1.83s. Therefore, many asynchronously arriving gradients
are sent to the PS without in-network aggregation in ESA
and ATP, incurring higher aggregation overhead of the PS
compared with GOAT.
Summary. Through collaboratively in-network aggregation,
GOAT can achieve the highest training throughput, the least
training time, and the least aggregation overhead of the PS
compared with other benchmarks.

C. Simulation Settings and Results

Settings. Our simulations are implemented on a physical
server equipped with an Intel Core i9-10900 processor and
64GB RAM. Similar to Sec. IV-B, we adopt the LP solver
PuLP [22] to compute the gradient scheduling policy. To verify
the theoretical performance of GOAT, we select two practical
topologies. The first topology is a leaf-spine topology [29],
which consists of 20 switches (10 spine switches and 10
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Fig. 10: Aggregation Overhead of the PS vs. No. of Workers
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Fig. 11: In-network Aggregation Amount vs. No. of Workers

20 25 30 35
No. of Workers

0

10

20

30

40

50

C
om

m
.

O
ve

rh
ea

d
(G

B
)

GOAT
ESA
ATP
Geryon

(a) Leaf-Spine

40 50 60 70
No. of Workers

0

20

40

60

80

100

C
om

m
.

O
ve

rh
ea

d
(G

B
)

GOAT
ESA
ATP
Geryon

(b) Fat-Tree

Fig. 12: Communication Overhead vs. No. of Workers
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Fig. 13: Communication Overhead vs. Standard Deviations

leaf switches) and 50 servers. The second one is a fat-tree
topology [30], which contains 80 switches (32 edge switches,
32 aggregation switches and 16 core switches) and 192 servers.
Considering the practical situation, we randomly select 20%
of the switches as programmable switches with a memory of
64MB (same as the memory size of Intel Tofino 2). Each
worker sends the traffic of 221MB (same as the gradient size of
AlexNet [31]) to the PS. To simulate network dynamics, we set
sending rates of workers with a normal distribution probability,
similar to the work [32]. Specifically, we let the average
sending rate of workers be 10Gbps. For each worker, we set
its sending rate as ratio×10Gbps, where ratio ∈ [0, 1] is
obtained by the probability of normal distribution. By default,
we set the standard deviation of the normal distribution to 0.2.

Note that, although network emulator mininet [33] supports
replacing normal switches with software P4 switches (i.e.,
bmv2 [34] switches) to simulate the network, it faces a
critical performance problem. Specifically, when the scale of
topologies increases to tens of hosts, the bandwidth of bmv2
switches will degrade to several Mbps with high packet loss
rates. The experimental results of the work [35] also confirmed
this conclusion. Therefore, we do not choose to perform large-
scale simulations through bmv2 and mininet, but through
running the algorithm simulations.
(Exp#4) Comparison on gradient aggregation amount. We
measure the gradient aggregation amount of four solutions, and
the results are shown in Figs. 10-11. Fig. 10 shows that GOAT
obtains the least aggregation overhead of the PS compared
with other alternatives. For example, in the leaf-spine topology
with 35 workers, the PS aggregation overheads of GOAT,
ESA, ATP and Geryon are 60MB, 5.7GB, 6.7GB and 8.4GB,
respectively. GOAT reduces the aggregation overhead of the
PS by 98.9%, 99.1% and 99.2%, compared with ESA, ATP
and Geryon, respectively.

Then, we consider the traffic aggregated by programmable

switches (i.e., in-network aggregation amount). Since Geryon
does not perform in-network aggregation, we omit it in Fig.
11. We can see that GOAT achieves the highest in-network
aggregation amount compared with other alternatives in Fig.
11. For example, in the fat-tree topology, given 40 workers,
the in-network aggregation amounts of GOAT, ESA and ATP
are 9.6GB, 3.2GB and 1.9GB, respectively. Our algorithm
considers multiple switches to collaboratively perform in-
network aggregation, moving the most traffic aggregated in
programmable switches.
(Exp#5) Comparison on communication overhead. In this
set of evaluations, we show the communication overhead of
four solutions. Fig. 12 shows that GOAT achieves the least
communication overhead compared with other benchmarks.
Given 35 workers in the leaf-spine topology, the communica-
tion overheads of GOAT, ESA, ATP and Geryon are 13.7GB,
19.8GB, 20.9GB and 37.1GB, respectively. GOAT reduces
communication overhead by 31.1%, 34.3% and 63.1% com-
pared with ESA, ATP and Geryon, respectively. The reason
is that GOAT schedules gradients to switches to minimize
communication overhead.

In Fig. 13, we fix the number of workers and vary the nor-
mal distribution’s standard deviation to evaluate the influence
of network dynamics. As the degree of network dynamics
increases, we can see that the communication overheads of
ESA and ATP increase either. When the standard deviation is
0 (all workers have the same sending rates), ESA and ATP will
aggregate all gradients in each worker’s nearest programmable
switches, thus gaining less communication overhead than
GOAT. As the standard deviation increases, more and more
traffic of ATP and ESA is aggregated in the PS, incurring
massive communication overhead.
Summary. Through selecting optimal aggregation nodes for
workers, GOAT can achieve the highest in-network aggrega-
tion amount and the least communication overhead compared
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with alternatives when encountering network dynamics.

V. CONCLUSION

In this paper, we present GOAT, a novel in-network aggre-
gation approach with gradient scheduling. GOAT minimizes
the communication overhead in the network by collaboratively
conducting INA on multiple programmable switches. We fur-
ther propose a knapsack-based randomized rounding algorithm
for gradient scheduling and analyze its approximation perfor-
mance. Extensive testbed experimental and simulation results
show that GOAT can efficiently aggregate asynchronously
arriving gradients and accelerate the distributed training.
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