
110 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Joint Request Updating and Elastic Resource
Provisioning With QoS Guarantee in Clouds

Gongming Zhao , Member, IEEE, Jingzhou Wang , Graduate Student Member, IEEE,
Hongli Xu , Member, IEEE, Yangming Zhao , Member, IEEE, Xuwei Yang,

and He Huang, Member, IEEE, ACM

Abstract— In a commercial cloud, service providers (e.g., video
streaming service provider) rent resources from cloud vendors
(e.g., Google Cloud Platform) and provide services to cloud
users, making a profit from the price gap. Cloud users acquire
services by forwarding their requests to corresponding servers.
In practice, as a common scenario, traffic dynamics will cause
server overload or load-unbalancing. Existing works mainly deal
with the problem by two methods: elastic resource provisioning
and request updating. Elastic resource provisioning is a fast and
agile solution but may cost too much since service providers
need to buy extra resources from cloud vendors. Though request
updating is a free solution, it will cause a significant delay,
resulting in a bad users’ QoS. In this paper, we present a new
scheme, called real-time request updating with elastic resource
provisioning (TRUST), to help service providers pay less cost
with users’ QoS guarantee in clouds. In addition, we propose an
efficient algorithm for TRUST with a bounded approximation
factor based on progressive-rounding. Both small-scale experi-
ment results and large-scale simulation results show the superior
performance of our proposed algorithm compared with state-of-
the-art benchmarks.

Index Terms— Cloud computing, elasticity, request updating,
resource provisioning.

I. INTRODUCTION

DRIVEN by the rapid growth of the demand for flexible
and efficient computation power, cloud computing has

gained much attention from both industry and academia [2].
Compared with building IT infrastructure, cloud computing
liberates us from cumbersome tasks (e.g., managing and main-
taining devices). Consequently, cloud computing has gained

Manuscript received 31 October 2022; revised 17 April 2023;
accepted 13 May 2023; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor T. He. Date of publication 5 June 2023; date of current
version 16 February 2024. This work was supported in part by the National
Science Foundation of China (NSFC) under Grant 62102392, in part by the
National Science Foundation of Jiangsu Province under Grant BK20210121,
in part by the Hefei Municipal Natural Science Foundation under Grant
2022013, and in part by the Youth Innovation Promotion Association of
Chinese Academy of Sciences under Grant 2023481. Some preliminary
results of this paper were published in the Proceedings of IEEE INFOCOM
2022 [DOI: 10.1109/INFOCOM48880.2022.9796788]. (Corresponding
author: Hongli Xu.)

Gongming Zhao, Jingzhou Wang, Hongli Xu, and Yangming Zhao are with
the School of Computer Science and Technology, University of Science and
Technology of China, Hefei, Anhui 230027, China, and also with the Suzhou
Institute for Advanced Research, University of Science and Technology
of China, Suzhou, Jiangsu 215123, China (e-mail: gmzhao@ustc.edu.cn;
wjzwgh@mail.ustc.edu.cn; xuhongli@ustc.edu.cn; zhaoym.ustc@gmail.com).

Xuwei Yang is with Huawei Cloud Computing Technology Company Ltd.,
Beijing 100085, China (e-mail: yangxuwei1@huawei.com).

He Huang is with the School of Computer Science and Tech-
nology, Soochow University, Suzhou, Jiangsu 215123, China (e-mail:
emil.hhuang@gmail.com).

Digital Object Identifier 10.1109/TNET.2023.3276881

enormous economic earnings in recent years thanks to its
convenience and efficiency, and an increasing number of enter-
prises/individuals are outsourcing their services/workloads to
clouds [3].

In practice, there are mainly three roles in clouds: cloud
vendors, service providers and cloud users [4]. Cloud vendors
(e.g., Amazon Web Services and Google Cloud Platform)
are responsible for building and maintaining physical servers.
They lease a certain amount of VMs/containers to each service
provider. Then, service providers can implement their services
like security [5], storage [6], auditing [7], and so on, also
called the Network Function (NF) instances. Cloud users can
purchase the services according to their requirements, so their
requests can be scheduled to the corresponding NFs. For
instance, a VPN service provider rents several VMs from a
cloud vendor to implement a VPN function. Then, cloud users
can buy the VPN service from the service provider and acquire
services by forwarding their traffic to the corresponding VPNs.

In a large-scale multi-tenant cloud, it is evident that the
amount of traffic is tremendous and traffic dynamics is a long-
standing problem [3], causing load-unbalancing and even over-
load among NFs, which will severely affect service availability
and execution efficiency [8]. Consequently, it will decrease
users’ QoS [9]. To deal with traffic dynamics in clouds and
ameliorate the QoS, request updating has been widely adopted,
which means transferring the requests to another available NF.
Existing works usually design the request updating schemes
for NF load-balancing [10], [11] or minimizing the makespan
[12], [13]. For example, the authors in [10] present a dis-
tributed request scheduling mechanism so as to achieve load
balancing among servers in data centers by fairly distributing
the traffic from the edge switches. The work [13] tries to
find an optimal solution for less cloud resource cost under
the deadline constraint via the immune-based particle swarm
optimization algorithm [14].

Although plenty of works have designed reasonable request
updating schemes to handle traffic dynamics, there exist three
fundamental disadvantages in request updating. First, the con-
troller capacity is limited. The processing speed of a controller
depends on different factors, like the kind of controllers and
controller placement. For instance, according to the testing
results in Table II of [15], it takes 71.2ms to send sending
1000 flow-mod messages to reroute flows on an ONOS
controller, with a network topology consists of 81 switches.
As a comparison, authors in [16] also test the update delay
and show that ONOS can process 40K flow-mod messages
per second, with a topology consisting of 32 switches. For
the same topology, the authors in [16] also demonstrate that
an OpenDayLight, which is also a main-stream controller

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0002-8783-3990
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-4194-3024

ZHAO et al.: JOINT REQUEST UPDATING AND ELASTIC RESOURCE PROVISIONING 111

used in SDN, can only process 0.3K flow-mod messages
per second. Thus, generating a large number of new rules
for request updating will significantly increase the response
time of the controller, making the controller become the
bottleneck of the network [17]. Consequently, the controller
may be congested and block new arrival requests, leading to
the degradation of user experience. Second, request updating
involves the delay on switches. The authors in [18] point out
that the duration between sending the update messages and
updating the corresponding entries on switches may be tens
of milliseconds. The delay on switches will lead to wrong
operations of flows because of the outdated entries [18].
Finally, there exists state inconsistency issue when updating
requests. The work [19] reveals that the update delays on
each switch are heterogeneous, and the asynchronous updating
actions will cause partial execution of rule-update, which
leads to network state inconsistency. This inconsistency is
observable in terms of sending packets in transient loops [20],
increasing link load [21], or bypassing important waypoints
such as a flow classifier [22]. Furthermore, since NFs need to
record the states of processed requests, request updating will
bring extra delay and overhead to maintain the requests’ state
consistency on NFs [23]. Because of these three disadvantages,
request updating is hard to assure users’ QoS in large-scale
clouds, and alternative solutions as supplementary methods
are urgently needed.

By enabling the virtualization technology, elastic resource
provisioning has become a new trend to deal with traf-
fic dynamics in clouds [24], [25], [26], [27], [28]. Elastic
resource provisioning means that the system can add or remove
resources (such as CPU cores, memory, VM or container
instances) to adapt to load variation in a real-time manner
[28]. In practice, the cloud vendors usually would offer several
suitable configuration types associated with fixed resource
combinations [25] and each NF will choose one of the resource
configuration types to serve requests from cloud users. For
instance, in Google Cloud Platform (GCP) [29], the price for
a virtual machine with 4 CPU cores and 15 GB memory
is $97 per month and the price for a VM with 8 CPU
cores and 30 GB memory is $197 per month. The previous
works about elastic resource provisioning mainly focus on
how to improve network performance [30], increase resource
capacity [31] or save the energy [32]. For instance, the authors
in [30] provide automatic deployment and proactive scaling of
multiple simultaneous web applications methods to improve
the infrastructure performance, which has been deployed in
Amazon Elastic Compute Cloud.

The idea of elastic resource provisioning holds an excellent
promise of solving the problem of traffic dynamics. Compared
with request updating solutions, resizing a VM/container only
takes tens of milliseconds [25], [33] and there is no need to
worry about the problem of request state consistency. Accord-
ingly, users’ QoS can be guaranteed. However, it will increase
the cost of service providers since they should pay more to
cloud vendors for the extra resources. In contrast, with the
request updating method, service providers do not have to pay
the extra money, but users’ QoS may be affected, due to the
update delay and the requirement of request state consistency.
Hence, we find the two approaches can be complementary to
each other to help service providers pay less cost with users’
QoS guarantee.

In this paper, we propose real-time request updating with
elastic resource provisioning (TRUST) when facing traffic
dynamics. Specifically, since request updating would increase
the update delay and decrease users’ QoS, we try to finish
the updating operation under the time threshold T , which
will be determined by users’ QoS demand. For instance, in a
cellular communication network, the authors in [34] show
that when the delivery delay is below 150ms, the quality of
propagation can be still guaranteed. Meanwhile, we try to
minimize the infrastructure cost of purchasing cloud resources.
In a nutshell, TRUST can enlighten a way that helps service
providers to spend less money with users’ QoS guarantee. The
main contributions of this paper can be summarized as follows:

1) We comprehensively analyze the current methods to deal
with traffic dynamics in clouds and show the advantages
and weaknesses of request updating and elastic resource
provisioning.

2) We give the formulation of real-time request updating
with elastic resource provisioning (TRUST), which can
assure users’ QoS and save money for service providers.
To our best knowledge, this is the first work that takes
advantages of both elastic resource provisioning and
request updating to handle traffic dynamics.

3) We present a randomized-rounding based algorithm.
The performance analysis shows that our algorithm can
achieve the optimal value with a high probability.

4) We conduct small-scale experiments and large-scale sim-
ulations using real-world topologies and datasets to show
that the proposed algorithm can achieve superior perfor-
mance compared with the state-of-the-art solutions.

II. PRELIMINARIES

A. Commercial Cloud Model
A typical commercial cloud mainly consists of three parts:

cloud vendors, service providers and cloud users. Cloud ven-
dors (1) host a set of physical machines, (2) construct and
maintain the VMs/containers upon the physical servers, and
(3) sell or lease resources to service providers and users. Cloud
vendors set several configuration types of VMs/containers,
each associated with a certain amount of computing resources
(e.g., CPU or RAM). Of course, they will charge a reasonable
price for the resources service providers use. Service providers
will rent resources from cloud vendors such as a VM with
4 core CPUs and 8G RAM to implement their services, e.g.,
VPN and ELB, also called Network Function (NF) instances.
Service providers sell these services to cloud users and process
the requests from them. Service providers also need to pay the
infrastructure prices to cloud vendors, making a profit from
the price gap. Obviously, the service providers all wish to
spend less money on infrastructure costs and provide services
to users with high QoS guarantee.

We use S = {s1, s2, . . . s|S|} to denote the set of physical
servers maintained by cloud vendors, and each server s comes
with limited resources R(s). Here R(s) can be expanded into
a resource vector to represent different types of resources
on server s, such as CPU, RAM and bandwidth. Let C =
{c1, c2, . . . c|C|} represent the set of configuration types, and
each configuration type c comes with resources usage r(c),
processing capacity p(c) and infrastructure cost m(c). Note
that, r(c) can also be expanded into a resource vector. N =
{n1, n2, . . . n|N |} represents the set of NFs and Ns denotes

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

112 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

TABLE I
CONFIGURATION TYPES AND PRICES ACCORDING TO GOOGLE CLOUD

PLATFORM [29]. CONFIGURATION TYPE A CONTAINS A 4 CORE CPU
AND 15G RAM AND IS CAPABLE TO HANDLE 50GBPS REQUESTS.

CONFIGURATION TYPE B CONTAINS A 8 CORE CPU AND 30G
RAM AND IS CAPABLE TO HANDLE 100GBPS REQUESTS

the set of NFs on the physical server s ∈ S. We use Γ =
{γ1, γ2, . . . γ|Γ|} to denote the set of requests generated by
cloud users. Each request γ comes with a traffic size of f(γ),
which can be acquired by collecting flow statistics information
on the controller [35].

B. A Motivating Example
This section presents a motivating example to demonstrate

the advantages of TRUST compared with existing solutions.
As shown in Table I, we assume that cloud vendors will

provide two kinds of NF configuration types. A video stream-
ing service provider owns three NFs, denoted as NF1, NF2 and
NF3, all initialized as type A to provide high quality online
videos. NFs with type A are able to deal with 50 Gbps traffic
load. Now the service provider is facing traffic dynamics.
The current traffic loads of three NFs are 65 Gbps, 56 Gbps
and 27 Gbps, respectively, which means overload on both
NF1 and NF2. Suppose that every user is enjoying a similar
video streaming service and one request takes 10 Mbps
traffic load on average. Then, we assume that transferring
100 requests from one NF to another will cost one unit time-
span. To guarantee the users’ QoS, the service provider needs
to finish the updating process within 10 units. Otherwise, the
delay may upset the users. The performance comparison of
the three algorithms is shown in Table II.

Existing works mainly deal with traffic dynamics by two
methods: Elastic Resource Provisioning (ERP) and Request
Updating (RU). ERP (e.g., [28], [36]) will buy extra resources
to cope with the burstiness traffic. It is an agile solution
and will not cause a decrease in users’ QoS, but may be
expensive. Specifically, in this example, ERP needs to upgrade
the configuration to type B for both NF1 and NF2. This way
will not involve significant update delay and the problem of
request state consistency, but cost the service provider an
extra 200 USD per month.

RU (e.g., [37], [38]) mainly transfers the requests from
the overloaded NF to another available one to alleviate the
traffic dynamics. It is a free solution but may spend a lot of
time on request updating. Specifically, RU needs to update
1500/600 requests from NF1/NF2 to NF3, and will cost
21 units timespan, which means RU cannot well satisfy the
QoS demand of users. Moreover, RU may not be able to hold
all the traffic under some extreme situations due to the limited
capacity of NFs. Under this circumstance, the service provider
has to abandon or deny some requests.

In practice, since a small delay may not affect the QoS of
users remarkably [39], we try to combine the two methods.
As a result, service providers will spend less money and
still guarantee the QoS. We introduce TRUST, a brand-new
approach that combines these two methods. If TRUST is

Fig. 1. The system workflow of trust.

adopted in this example, we only need to transfer 600 requests
from NF2 to NF3, and upgrade the configuration type of NF1.
Compared with RU, TRUST can finish the updating process
within 10 units timespan and will not cost too much compared
with ERP. This example fully demonstrates the advantages of
TRUST.

C. System Workflow
In this section, we show how our proposed TRUST scheme

works in the real production environment. The workflow is
shown in Fig. 1. When a new request arrives, it will be
scheduled by a greedy based online scheduling algorithm
called Least-Burden First (LBF). We choose the NF with the
least burden to handle the request. If the chosen NF exceeds
the load ratio threshold, Algorithm 1 will be triggered to
jointly upgrade the configuration and update the requests.
Meanwhile, considering that the traffic is dynamic, we also
set a timer (e.g., 10 minutes) to detect NFs’ load status
periodically. If some NFs are overloaded, Algorithm 1 will
be triggered. Till then, we need to estimate the current traffic
information based on traffic matrix [40], [41], [42], [43].
We should note that the traffic information is needed only
when Algorithm 1 is triggered.

In practice, the two events are highly unlikely to take place
at the exact same time. That’s to say, they are likely to take
place in sequence. For instance, if the first event occurs earlier,
we will execute Algorithm 1. Then, the system will enter a
busy waiting status. In specific, if Algorithm 1 is repeatedly
triggered, it needs to check whether there exists Algorithm 1
running. If so, the next running needs to wait until the current
execution is over. In conclusion, Algorithm 1 will not be
executed twice at the same time under any circumstance.

The reasons why we do not execute updating algorithm for
every upcoming request mainly include the following aspects.
First, for every request, request updating will bring extra delay
and overhead to maintain the requests’ state consistency on
NFs [23]. For example, after request updating, if a user’s
requests are scheduled to an NF without maintaining the
requests’ state, it will incur request state inconsistency and
wrong operations. Second, for a controller, the burden to
execute the algorithm will severely affect the performance.
If we adopt the request updating in an online manner, the
controller needs to frequently execute the proposed algorithm
to acquire the decisions, which may take a long-time span,
causing significant delay. As a result, the controller will be
overwhelmed for handling upcoming requests [44]. In short,
executing request updating in an online manner is not practical
in real-production environment. Due to the above facts, current
works mainly focus on online scheduling [45], [46], [47] and

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: JOINT REQUEST UPDATING AND ELASTIC RESOURCE PROVISIONING 113

TABLE II
ALGORITHM COMPARISON. ERP WILL UPGRADE THE CONFIGURATION OF NF1 AND NF2 TO TYPE B, WHICH COSTS $491 AND NEGLIGIBLE UPDATE

DELAY. RU NEEDS TO UPDATE 1500/600 REQUESTS FROM NF1 /NF2 TO NF3 , WHICH COSTS 21 UNITS UPDATE DELAY AND $291. TRUST
WILL TRANSFER 600 REQUESTS FROM NF2 TO NF3 , AND UPGRADE THE CONFIGURATION TYPE OF NF1 .

THIS COSTS $391 AND 6 UNITS UPDATE DELAY

offline updating [48], [49], [50] for requests. Like the existing
works, we choose to schedule the upcoming requests in an
online manner and offline update requests.

Meanwhile, to ensure that the decisions over time will
not oscillate, we will set load ratio threshold for updating.
Specifically, according to [28], the configuration of an NF can
be upgraded when the load ratio is greater than threshold A
(e.g., 80%). When executing the updating algorithm, we can
limit the load ratio below threshold B (e.g., 70%). Meanwhile,
we can set threshold C of load ratio to downgrade the config-
uration (e.g., 50%). Thus, when the load is between thresholds
A and C, the updating algorithm will not be triggered. In all,
according to network state, setting thresholds reasonably can
effectively avoid decisions oscillating.

In the next section, we will give the problem formulation of
joint elastic resource provisioning and request updating, i.e.,
TRUST. Correspondingly, we show the NP-Hardness of the
problem and propose an approximate algorithm with bounded
approximation factors.

D. Problem Formulation
This section describes the main problem formulation of

TRUST. In a commercial cloud, the service provider serves
the requests from cloud users and processes the requests in
NFs. As time goes by, load unbalancing occurs among NFs
due to traffic dynamics. At this time, the service provider
will choose to change the configuration type of some NFs
or update the requests. To help the service provider spend less
money on NFs and save time from updating requests, also
for achieving a better QoS of users, we should consider the
following constraints in coping with traffic dynamics.

1) Physical Server Resource Constraint: The total resources
used by NFs that are on the same physical server cannot
exceed the whole resources of the physical server.

2) NF Capacity Constraint: The configuration type that an
NF chooses must be able to handle the requests it receives.

3) Update Delay Constraint: t0 represents the update delay
of a single request, which is determined by the system hard-
ware performance. Considering various factors, it is difficult
to determine a representative value for controller update delay
as we discussed in the Introduction. However, we should note
that, no matter which mode is adopted or what topology is
deployed, the processing speed of the controller is always
restricted. Meanwhile, the update delay t0 defined in our
problem formulation is easy to be modified when facing dif-
ferent situations. In this paper, we generally consider different
main-stream controllers like ONOS and OpenDayLight and
choose the medium number 0.5ms as a case study. Since

the controller will encapsulate and install a flow entry for
each updated request, the total update delay can be approx-
imately linear with the number of updated requests [44],
[51]. To assure users’ QoS, the total update delay cannot
exceed the time threshold T , which is determined by the
user’s QoS demand. For instance, in a cellular communication
environment, T is set to 150ms [34].

4) Objective Function: Our object is to minimize the
infrastructure cost that the service provider needs to pay when
satisfying those constraints above.

We use the variable xn
c ∈ {0, 1} to denote whether NF n

will choose the configuration type c (xn
c = 1) or not (xn

c = 0).
The variable yγ

n ∈ {0, 1} represents whether the request γ will
be sent to NF n (yγ

n = 1) or not (yγ
n = 0). We use a constant

β(γ, n) to denote whether the request γ is assigned to NF n
before update (β(γ, n) = 0) or not (β(γ, n) = 1).

The formulation is as follows:

min
∑
n∈N

∑
c∈C

m(c) · xn
c

S.t.



∑
c∈C

xn
c = 1, ∀n ∈ N∑

n∈N

yγ
n = 1, ∀γ ∈ Γ∑

n∈Ns

∑
c∈C

xn
c · r(c) ≤ R(s), ∀s ∈ S∑

γ∈Γ

yγ
n · f(γ) ≤

∑
c∈C

xn
c · p(c), ∀n ∈ N∑

γ∈Γ

∑
n∈N

yγ
n · β(γ, n) · t0 ≤ T,

xn
c , yγ

n ∈ {0, 1}, ∀n, c, γ

The first set of equations means that each NF will choose a
configuration type c ∈ C. We should note that, the first set of
equations, i.e.,

∑
c∈C xn

c = 1, ∀n ∈ N means that every NF
will choose an appropriate configuration according to current
load, i.e., upgrading the configuration when facing overload
or downgrading the configuration when facing underload. The
second set of equations means each request γ will be sent to an
NF n ∈ N . The third set of inequalities denotes the physical
server resource constraint that all the resources allocated to
NFs should not exceed the total resources on the physical
server s. The fourth set of inequalities describes that the traffic
load on each NF should not exceed its capacity, i.e., the NF
capacity constraint. The fifth set of inequalities means that
the duration of updating request should not exceed the time
threshold T . Our objective function is to minimize the total
infrastructure cost, i.e.,

∑
n∈N

∑
c∈C m(c) · xn

c .

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

114 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Theorem 1: TRUST defined in Eq. (1) is an NP-Hard
problem.

Proof: We can prove the NP-hardness by showing that
the bin-packing problem [52] is a special case of TRUST.
Specifically, we first assume all the NFs are overloaded. Then,
for each NF, we divide the requests into two parts: the first
part of requests are within the NF’s capacity and the second
part of requests are those beyond NF’s capacity. So we have
to upgrade each NF to a configuration type to hold the second
part of requests. This equals we need to find extra NFs with
appropriate configurations to handle them. Finally, we assume
there exists only one configuration type for NFs. This equals
how to pack these requests into knapsacks while achieving the
minimum costs, i.e., the bin-packing problem. This concludes
the NP-Hardness of our problem. □

E. Problem Complexity Analysis
In fact, the problem remains challenging if we simplify

our problem by ignoring the variables associated with elastic
resource provisioning, i.e., xn

c . The simplified problem can be
formulated as follows:

min h(Ln)

S.t.



∑
n∈N

yγ
n = 1, ∀γ ∈ Γ∑

γ∈Γ

∑
n∈N

yγ
n · β(γ, n) · tγ,n ≤ T,

Ln =
∑
γ∈Γ

yγ
n · f(γ), ∀n ∈ N

yγ
n ∈ {0, 1}, ∀n, γ

We define a function h to calculate the infrastructure cost
of NFs. The input of the function is the load of NF n, i.e.,
Ln. When h is convex, our objective is to minimize Ln.
Otherwise, we need to maximize Ln. The first constraint
means every request needs to be scheduled to an NF. The
second constraint represents the update delay threshold. The
third constraint calculates the load on every NF. All the vari-
ables are binary integers. The simplified problem is a special
case of the DSRU (Delay-Satisfied Route Update) problem
defined in [44]. The authors in [44] proved the NP-Hardness
by showing multi-commodity flow with minimum congestion
problem [53] is a special case of the DSRU problem and
proposed a rounding-based algorithm to solve it. It shows
the complexity of the kind of problems and also implies that
currently there may not exist any more efficient algorithms to
solve it. Meanwhile, our problem is much more difficult than
DSRU problem, since we have another variable to determine
the configuration for each NF, i.e., xn

c . In our algorithm design,
we will show how to achieve a feasible solution with bounded
approximation factors.

F. Discussions
1) Update Delay: In this paper, we mainly consider the

situation where the updating of requests is executed in the
same datacenter, and the delay is simulated as a constant
t0 [54], [55]. However, we further show that our algorithm
can still handle the case where geographically distributed
datacenters exist. Specifically, we can change the constant
t0 into tγ,n, denoting the delay of transferring request γ to
the NF n. If the request does not need to be updated, i.e., the

NF remains the same, the update delay tγ,n = 0. The modified
formulation is as follows:

min
∑
n∈N

∑
c∈C

m(c) · xn
c

S.t.



∑
c∈C

xn
c = 1, ∀n ∈ N∑

n∈N

yγ
n = 1, ∀γ ∈ Γ∑

n∈Ns

∑
c∈C

xn
c · r(c) ≤ R(s), ∀s ∈ S∑

γ∈Γ

yγ
n · f(γ) ≤

∑
c∈C

xn
c · p(c), ∀n ∈ N∑

γ∈Γ

∑
n∈N

yγ
n · β(γ, n) · tγ,n ≤ T,

xn
c , yγ

n ∈ {0, 1}, ∀n, c, γ

Since tγ,n is only determined by the request and the NF, it is
also a constant, which means the feasibility of our algorithm.
If the physical distance between a request and a datacenter is
too long, the value of tγ,n would be very large. That is to say,
our algorithm is unlikely to acquire the corresponding transfer
solution. We can similarly use the proposed algorithm to derive
a feasible solution with bounded approximation factors.

2) NF Configuration: Practically, cloud vendors provide
both fixed and configurable instances for clients. Specifically,
a fixed instance is provisioned in a constant capacity, i.e.,
each configuration is associated with a certain number of
CPU cores, memory, storage, etc. And a configurable instance
allows clients to choose resource in a more fine-grained
manner. Compared with the fixed type, a configurable instance
can provide resource in a more fine-grained manner. However,
it also means a higher capability of resource management
and more complex resource provisioning [28], which is why
current mainstream cloud vendors, like Amazon, Google and
Microsoft all prefer the fixed configuration. Thus, in this
paper, we mainly focus on the fixed configuration rather than
configurable instances.

3) Elasticity Scaling: There are two kinds of scaling in elas-
tic resource provisioning. Specifically, the first one is called
horizontal scaling, which directly adds or removes instances.
The second is called vertical scaling, which increases or
decrease network resources of instances, like CPU cores,
memory or network bandwidth [28]. Currently in both
academia and industry, both horizontal scaling and vertical
scaling are adopted. We mainly focus on vertical scaling in
this paper, because of the following advantages [56], [57],
[58]. First, vertical scaling is more fine-grained, since it allows
to add or remove units of resources. Second, vertical scaling
can eliminate the overhead caused by booting extra instances,
and it does not need additional machines like load balancers.
Finally, it guarantees the sessions of requests will not be
interrupted when scaling. That is to say, vertical scaling can
guarantee users’ QoS. Therefore, as a prospective study, our
work focuses on the promising situation where vertical scaling
is adopted.

III. ALGORITHM DESCRIPTION

A. Randomized Rounding Algorithm for TRUST
This section presents an approximation algorithm based

on randomized rounding [59] for TRUST. The reason for

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: JOINT REQUEST UPDATING AND ELASTIC RESOURCE PROVISIONING 115

choosing the randomized rounding algorithm mainly includes
the following aspects. First, it is an efficient approximate
algorithm that can achieve a feasible solution close to the
optimal value with a high probability. Second, it will not
exceed the constraint by a bounded factor. Overall, it is
applicable and efficient to design an approximate algorithm
based on the randomized rounding algorithm.

In specific, the first step is to relax Eq. (1) into an LP by
replacing integer constraints with linear constraints. In this
way, we can solve it with a linear program solver (e.g., PuLP
[60]) and the solutions are denoted by {x̃n

c } and {ỹγ
n}.

In the second step, we identify which configuration type
each NF should choose and which NF each request should be
scheduled to, i.e., obtain feasible solutions {x̂n

c } and {ŷγ
n}.

Then, we round x̂n
c to 1 with probability x̃n

c and round ŷγ
n

to 1 with probability ỹγ
n. We should note that the choice is

done in an exclusive manner, i.e., for each n, exactly one of
{x̃n

c } is set to one; the rest are set to zero. And for each γ,
exactly one of {ỹγ

n} is set to one; the rest are set to zero.
After we acquire the final results of algorithm, i.e., {x̂n

c } and
{ŷγ

n}, we can determine which configuration an NF adopts and
which NF a request is assigned to. If x̂n

c = 1, NF n chooses
the configuration c, and if ŷγ

n = 1, request γ is assigned to
the NF n. The formal algorithm is shown in Algorithm 1.

As discussed in Section II-C, Algorithm 1 will be trig-
gered by a new-arrival request or a timer. Thus, how to
set a proper timer is also an important issue. If we execute
Algorithm 1 at a long time interval, the network performance
may become worse due to traffic dynamics. However, if we
execute Algorithm 1 too frequently, it may affect too many
requests in the cloud, decreasing the whole cloud network
performance. Usually, we determine the interval of executing
Algorithm 1 according to the cloud network status (e.g.,
50 minutes). To further promote network performance during
the interval, we propose the improved scheme TRUST(x%),
where x represents the percentage of selected requests and
NFs. Specifically, we set a short time interval (e.g., 10 minutes)
and select a small part (e.g., 1%) of overloaded NFs and
corresponding requests to execute Algorithm 1 for updat-
ing. Then, Algorithm 1 will be executed at the 10th, 20th,
30th, 40th minutes to partially update selected requests and
NFs, and at the 50th minutes, we will run Algorithm 1 to
globally update requests and NFs. In a word, TRUST and
TRUST(x%) are two different schemes and they are executed
parallelly and separately. TRUST(x%) can be regarded as a
modified and improved version of TRUST. The value of x
must be small to avoid affecting cloud network performance
significantly. Otherwise, the involved requests and NFs may
be too many, decreasing the network performance. In this
paper, we mainly consider when x = 1, 2, 5, how much can
TRUST(x%) improve the performance. The performance com-
parison between TRUST and TRUST(x%) will be assessed
through our simulations in Section IV-B.2.

B. Performance Analysis
Before we analyze algorithm performance, we introduce two

famous lemmas for approximation performance analysis.
Lemma 2 (Chernoff Bound): Given n independent vari-

ables: x1, x2, . . . , xn, where ∀xi ∈ [0, 1]. Let µ = E[
∑n

i=1 xi].

Then, we have Pr[
∑n

i=1 xi ≥ (1 + ϵ)µ] ≤ e
−ϵ2µ
2+ϵ and

Pr[
∑n

i=1 xi ≤ (1 − ϵ)µ] ≤ e
−ϵ2µ

2 where ϵ is an arbitrarily
positive value.

Algorithm 1 Randomized Rounding-Based Algorithm for
TRUST

1: Step 1: Solving the Relaxed Formulation
2: Construct a linear program by replacing the integral con-

straints with xn
c and yγ

n ∈ [0, 1]
3: Obtain the optimal solutions {x̃n

c } and {ỹγ
n}

4: Step 2: Acquire a feasible solution by randomized
rounding

5: for each NF n ∈ N do
6: Choose one x̂n

c = 1 with probability x̃n
c and rest are

set 0
7: end for
8: for each request γ ∈ Γ do
9: Choose one ŷr

n = 1 with probability ỹγ
n and rest are set

0
10: end for
11: Step 3: Derive a joint elastic resource provisioning and

request updating scheme according to {x̂n
c } and {ŷγ

n}

Lemma 3 (Union Bound): Given an accountable set of n
events: A1, A2, . . . An, each event Ai happens with probability
Pr(Ai). Then, Pr(A1 ∪A2 ∪ . . . ∪An) ≤

∑n
i=1 Pr(Ai).

Theorem 4: The proposed algorithm can obtain a value
of infrastructure cost close to the optimal infrastructure cost
derived by solving the LP with a high probability.

Proof: We define the infrastructure cost of NF n:
Pn =

∑
c∈C xn

c · m(c). Then, the total infrastructure cost,
i.e., the objective function can be denoted as:

∑
n∈N Pn.

According to Algorithm 1, we know the infrastructure cost
of NF n derived by LP, i.e., the optimal value is

∑
n∈N P̃n =∑

n∈N

∑
c∈C x̃n

c · m(c). After the rounding procedure of
algorithm, we acquire the feasible solution x̂n

c . Thus, we can
determine the infrastructure cost derived by algorithm, i.e., P̂n:

P̂n =
{

m(c), with probability x̃n
c

0, otherwise
(1)

So we have E[
∑

n∈N P̂n] =
∑

n∈N

∑
c∈C x̃n

c · m(c) =∑
n∈N P̃n. Then, we define the highest price of configuration

type is pmax. So we can say E[
∑

n∈N P̂n

|N |·pmax
] ∈ [0, 1], where |N |

is the number of NFs. We should note that for different n,
P̂n is independent from each other. Then, based on Lemma 2,
we can conclude that

Pr[
∑

n∈N P̂n

|N | · pmax
≥ (1 + ϵ)E[

∑
n∈N P̂n

|N | · pmax
]] ≤ e−

ϵ2
2+ϵ E[

∑
n∈N P̂n

|N|·pmax
]

⇔ Pr[
∑
n∈N

P̂n ≥ (1 + ϵ)
∑
n∈N

P̃n] ≤ e−
ϵ2
2+ϵ

∑
n∈N P̃n

|N|·pmax (2)

Eq. (2) means that the infrastructure cost derived by algo-
rithm, i.e.,

∑
n∈N P̂n will be more than the value derived by

LP, i.e.,
∑

n∈N P̃n with a very low probability. Thus, we can
say the output derived by algorithm, i.e.,

∑
n∈N P̂n is close

to the optimal solution of LP, i.e.,
∑

n∈N P̃n with a high
probability. □

Theorem 5: The algorithm guarantees that the total
resources of NFs in server s will not exceed the total resource
of server s by a factor of O(log |S|), where |S| is the number
of NFs.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

116 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Proof: We use Rn to denote the resource of NF n
and Rn =

∑
c∈C xn

c · r(c). After solving the LP, R̃n =∑
c∈C x̃n

c ·r(c). Then, we adopt the rounding procedure of x̃n
c

to acquire a feasible solution x̂n
c ∈ {0, 1} and R̂n. Specifically,

we round x̂n
c to 1 with probability x̃n

c . Thus, we can determine
the capacity of NF n derived by algorithm, i.e., R̂n:

R̂n =
{

r(c), with probability x̃n
c

0, otherwise
(3)

So we have

E[R̂n] =
∑
c∈C

x̃n
c · r(c) = R̃n (4)

and

E[
∑

n∈Ns

R̂n] =
∑

n∈Ns

∑
c∈C

x̃n
c · r(c) ≤ R(s) (5)

Then we define a constant α as follows:

α =
Rmin

rmax
(6)

where Rmin denotes the minimal resource among servers and
rmax denotes the maximum resource among configuration
types.

Combining the definition of α and Eq. (5), we have
R̂n · α
R(s)

∈ [0, 1]

E[
∑

n∈Ns

R̂n · α
R(s)

] ≤ α
(7)

We should note that for different n, R̂n is independent from
each other. Based on Lemma 2, we have

Pr[
∑

n∈Ns

R̂n · α
R(s)

≥ (1 + ϵ)α] ≤ e−
ϵ2·α
2+ϵ (8)

Now we assume that

Pr[
∑

n∈Ns

R̂n

R(s)
≥ (1 + ϵ)] ≤ e−

ϵ2·α
2+ϵ ≤ 1

|S|k+1
(9)

where k is an arbitrary positive integer. We know that
1

|S|k+1 → 0 when network size grows. The solution to Eq. (9)
is

ϵ ≥
(k + 1) log |S|+

√
(k + 1)2 log2 |S|+8(k + 1)α log |S|

2α
,

(10)

⇒ ϵ ≥ (k + 1) log |S|
α

+ 2, |S| ≥ 2 (11)

By applying Lemma 3, we have

Pr[
⋃
s∈S

∑
n∈Ns

R̂n

R(s)
≥ (1 + ϵ)]

≤
∑
s∈S

Pr[
∑

n∈Ns

R̂n

R(s)
≥ (1 + ϵ)]

≤ |S| · 1
|S|k+1

=
1
|S|k

(12)

Thus, we can conclude that the approximation factor is
ϵ + 1 = (k+1) log |S|

α + 3. □
Lemma 6: Suppose that C̃n is the optimal value of the

capacity of NF n to the LP while Ĉn is the value associated
with Algorithm 1. Ĉn will be at most less than C̃n by a factor
of (1− ϵ), where ϵ is an arbitrarily positive value.

Proof: We use Cn to denote the capacity of NF n and
Cn =

∑
c∈C xn

c · p(c). After solving the LP, C̃n =
∑

c∈C x̃n
c ·

p(c). Then, we adopt the rounding procedure of x̃n
c to acquire

a feasible solution x̂n
c ∈ {0, 1}. Specifically, we round x̂n

c to
1 with probability x̃n

c . Thus, we can determine that

Ĉn =
{

p(c), with probability x̃n
c

0, otherwise
(13)

So we have

E[Ĉn] =
∑
c∈C

x̃n
c · p(c) = C̃n (14)

Clearly, we also have Ĉn

cmax
and E[Ĉn

cmax
] ∈ [0, 1]. Specifi-

cally, cmax represents the maximum capacity among all the
NFs and cmin represents the minimum capacity among all
the NFs. For different n, Ĉn is independent from each other.
Based on Lemma 2, we have

Pr[
Ĉn

cmax
≤ (1− ϵ)E[

Ĉn

cmax
]] ≤ e−

ϵ2
2 E[Ĉn

cmax
] (15)

Combining Eq. (14), then we have

Pr[Ĉn ≤ (1− ϵ)C̃n] ≤ e−
ϵ2
2

C̃n
cmax (16)

Thus, we can conclude that after rounding procedure,
Algorithm 1 can derive a throughput, i.e., Ĉn, will not be
less than (1− ϵ)C̃n. □

Theorem 7: Algorithm 1 can achieve the approximation
factor of O(log |N |) for NF capacity, where |N | is the number
NFs.

Proof: By Lemma 6, we can know that Algorithm 1
will acquire a value of NF capacity Ĉn will not be less than
(1 − ϵ)C̃n. Then, we will show that the total traffic load on
each NF will not exceed C̃n by a factor of O(log |N |).

We use a variable vr
n to denote the traffic size of request r

to NF n.

vr
n =

{
f(r), with probability ỹr

n

0, otherwise
(17)

So we have

E[
∑
r∈Γ

vr
n] =

∑
r∈Γ

f(r) · ỹr
n ≤

∑
c∈C

x̃n
c · p(c) = C̃n (18)

We define:

α2 = min{ cmin

ỹr
n · f(r)max

} (19)

Combining Eq. (18) and Eq. (19), we have
vr

n · α2

C̃n

∈ [0, 1]

E[
∑
r∈Γ

vr
n · α2

C̃n

] ≤ α2

(20)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: JOINT REQUEST UPDATING AND ELASTIC RESOURCE PROVISIONING 117

Note that when n is given, for different r, vr
n is independent

from each other. Thus, by adopting Lemma 2, we have

Pr[
∑
r∈Γ

vr
nα2

C̃n

≥ (1 + ϵ′)α2] ≤ e
−ϵ2·α2

2+ϵ (21)

Now we assume that

Pr[
∑
r∈Γ

vr
n

C̃n

≥ (1 + ϵ′)] ≤ e
−ϵ2·α2

2+ϵ ≤ 1
|N |2

(22)

We know that 1
|N |2 → 0 when the network grows. By solv-

ing Eq. (22), we have the following result:

ϵ′ ≥
log |N |2 +

√
log2 |N |2 + 8α2 log |N |2

2α2
, n ≥ 2

⇒ ϵ′ ≥ 2 log |N |
α2

+ 2, n ≥ 2 (23)

Then, by applying Lemma 3, we have

Pr[
⋃

n∈N

∑
r∈Γ

vr
n

C̃n

≥ (1 + ϵ′)]

≤
∑
n∈N

Pr[
∑
r∈Γ

vr
n

C̃n

≥ (1 + ϵ′)]

≤ |N | · 1
|N |2

=
1
|N |

(24)

Combining Lemma 6, we can conclude that the approxima-
tion factor is

1 + ϵ′

1− ϵ
=

1
1− ϵ

(
2 log |N |

α2
+ 3), (25)

where ϵ is an arbitrarily positive value. □
Theorem 8: Our algorithm can guarantee that the update

time derived by Algorithm 1 will not exceed the time threshold
T by a factor of O(log |Γ|), where |Γ| denotes the number of
requests.

Proof: The proof of Theorem 8 is similar to the proof
of Theorem 5. Due to limited space, we omit the proof. □

Approximation Factor: From our analysis, we can make
the following conclusions. First of all, the infrastructure cost
derived by algorithm is close to the optimal value derived
by solving the LP with a high probability. Secondly, the
total capacity of the NFs on the same physical server will
not exceed the total resource of the server by a factor of
O(log |S|), where |S| means the number of servers. Thirdly,
the total request load on each NF will not exceed the capacity
of the NF by a factor of O(log |N |), where |N | is the number
of NFs. Finally, the time threshold for updateing will hardly
be violated by a factor of O(log |Γ|), where |Γ| denotes the
number of requests.

IV. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks
Performance Metrics: We adopt the following performance

metrics in evaluations: (1) the infrastructure cost; (2) the
system throughput; (3) the badput ratio [61]; (4) the update
delay; (5) the packet loss ratio; (6) the Round-Trip Time (RTT)
and (7) the flow completion time (FCT).

During a simulation run, we record each NF’s configuration
type and calculate the total infrastructure cost that the service
provider needs to pay. Then, we measure the total load of

all the NFs as the throughput from users that the service
provider can serve. Note that not all the traffic from users
can be served due to limited capacity. We define the amount
of traffic which cannot be served by NFs due to overload or
network congestion as badput. Then, we divide badput by the
total traffic amount from users as the badput ratio [61]. It is
a key metric to quantify the QoS and network performance
of a cloud network. Finally, we calculate the update delay
according to the number of rules that the controller needs to
generate. During a system implementation run, we measure
the packet loss ratio and the FCT using the command iPerf3.

Benchmarks: We compare TRUST with three state-of-the-
art benchmarks dealing with traffic dynamics in clouds. The
first benchmark is the Elastic Resource Provisioning Reactive
Mode (ERP-RM) algorithm [28], which is widely adopted in
commercial clouds like Amazon, Scalr and Rightscale. ERP-
RM sets the capacity threshold for each NF and automati-
cally selects the configuration type with sufficient resources.
The second benchmark is the Robustness-aware Real-time
Request Updating Algorithm (R3-UA) [37]. R3-UA adopts
the rounding method to acquire the real-time request updating
scheme in order to achieve load-balancing among NFs. This
benchmark also has update delay assurance by limiting the
number of updating requests. The third benchmark is the
Request Updating-Shortest Job First (RU-SJF) algorithm [38],
which is highly efficient and also widely adopted in clouds.
RU-SJF always chooses the NF with the least burden for the
request with the least traffic demand. R3-UA and RU-SJF
are both pure request updating methods and do not involve
modifying configuration types. Note that R3-UA considers
the update delay constraint, while RU-SJF does not. We
should note that, since existing works only adopt the elastic
resource provisioning or pure request updating to handle traffic
dynamics, we choose the state-of-the art algorithms in each
aspect as our benchmarks.

B. Simulation Evaluation

1) Simulation Settings: We choose both small- and
large-scale datacenter from Google Cluster Data [62]. The
small-scale contains 16 NFs and the large-scale datacenter
contains 320 NFs. Each request includes different properties,
like start/end time of the measurement period, job ID, NF ID,
request size, etc. We mainly leverage the NF ID and request
size to simulate distributing requests. The dynamic situations
are simulated according to [63]. The requests are divided into
two parts: primitive requests and newly increased requests.
Specifically, there are mainly two kinds of traffic dynamics.
One is called slight dynamic, where newly increased requests
account for 20% of all the requests. The other is called
magnitude dynamic, where newly increased requests account
for 50% of all the requests. During both two kinds of traffic
dynamics, 20% of NFs will receive newly increased requests
and 20% of NFs will reduce about 50% of primitive requests.
The configuration type is set according to Google Cloud
Platform [29]. A physical server can provide 100 core CPU
and 375 GB RAM for NFs. The configuration types are shown
in Table III.

We conduct simulation experiments under the two kinds of
traffic dynamics. Besides, we generate 6×103/6×104 requests
for the small/large topology by default. The update delay
constraint is set to 0.2/2s for the small/large topology by
default.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

118 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

TABLE III
CONFIGURATION TYPES ACCORDING TO GOOGLE CLOUD PLATFORM [29]

Fig. 2. Cost vs number of requests in the small topology.

Fig. 3. Cost vs number of requests in the large topology.

2) Performance Evaluation: We run three groups of simu-
lation experiments to check the effectiveness of our algorithm.
The results are shown in Figs. 2-17. Specifically, the first
group of simulation experiments shows the infrastructure cost
evaluations. The second group of experiments shows the
QoS-related metrics (e.g., throughput, badput ratio and update
delay) evaluations. The third group of experiments shows the
performance comparison between TRUST and TRUST(x%).

In the first group of experiments, we mainly focus on the
infrastructure cost results. Figs. 2-3 show the infrastructure
costs by varying the number of requests in clouds. We can
learn from the figures that the costs of four algorithms increase
when the number of requests grows. The figures show that
our proposed algorithm always acquires a much lower cost
than ERP-RM and a slightly higher cost than R3-UA and
RU-SJF. For example, in Fig. 2(a), given 8 × 103 requests
in the cloud, the cost results of four algorithms are 6, 3.4,
2.83 and 2.83 USD/hour, corresponding to ERP-RM, TRUST,
R3-UA and RU-SJF, respectively. TRUST reduces the cost
by 43.96% compared with ERP-RM while only increasing
the cost by 13.79% compared with both R3-UA and RU-
SJF. Since R3-UA and RU-SJF will not buy any more extra
resources when facing traffic dynamics, it is natural that the
cost results will be lower than those of ERP-RM and TRUST.
As a result, the QoS aspects (e.g., throughput and update
delay) will decrease significantly, which will be clarified
hereafter. In Fig. 3(a), when there are 9 × 104 requests, the
cost results of four algorithms are 171.42, 125.1, 114 and
114 USD/hour, corresponding to ERP-RM, TRUST, R3-UA

Fig. 4. Cost vs. Update delay constraint in the small topology.

Fig. 5. Cost vs. Update delay constraint in the large topology.

Fig. 6. Throughput vs. Number of requests in the small topology.

and RU-SJF. TRUST reduces the cost by 27% compared with
ERP-RM.

Figs. 4-5. show the infrastructure costs by varying the
update delay constraint and the results are shown in It can be
concluded from the figures that, given a larger update delay
threshold, TRUST will acquire a solution with less cost. Also,
since ERP-RM only executes elastic resource provisioning,
and R3-UA/RU-SJF only executes updating requests, their
cost results are steady. For instance, in Fig. 4(a), the cost
results of ERP-RM, R3-UA and RU-SJF are 4.46, 2.8 and
2.8 USD/hour, respectively. Obviously, the cost results of the
three benchmarks will not be affected by the update delay
constraint. When the update delay constraint is set as 0.05s,
TRUST is only able to transfer about tens of requests. The
cost result of TRUST is nearly the same as that of ERP-RM.
However, when given sufficient time, like 0.2s, the cost result
of TRUST is only 2.95 USD/hour. TRUST reduces the cost
by 33.9% compared with ERP-RM and increases the cost
only by about 5.4% compared with both R3-UA and RU-
SJF. The figures also imply that when facing the magnitude
dynamics, pure request updating methods will not be able to
solve the ultimate problem, i.e., insufficient resources to deal
with the sudden increasing number of requests. For instance,
in Fig. 5(b), even if TRUST has enough time to update
requests, the cost is still a bit higher than those of R3-UA
and RU-SJF. This is because extra resources are necessary,
and the consequence of not upgrading the configuration type
is to decline redundant requests, resulting in a bad users’ QoS.

In the second group of experiments, we mainly focus on
QoS-related matrics (e.g., throughput, badput ratio and update
delay). Figs. 6-7 show the throughput results by varying

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: JOINT REQUEST UPDATING AND ELASTIC RESOURCE PROVISIONING 119

Fig. 7. Throughput vs. Number of requests in the large topology.

Fig. 8. Throughput vs. Number of requests in the small topology.

Fig. 9. Throughput vs. Number of requests in the large topology.

the number of requests in clouds. We can learn from the
figures that the throughput results increase as the number
of requests grows. By Fig. 6(b), given 12 × 103 requests,
TRUST improves throughput by 62.2% and 25.3% compared
with R3-UA and RU-SJF, respectively. In Fig. 7(b), when
there are 11 × 104 requests, TRUST improves throughput
by 93.2% and 49.3% compared with R3-UA and RU-SJF,
respectively. Since the two methods are only updating requests
without buying extra resources, consequently, many requests
have to be abandoned due to limited processing capacity on
NFs. Note that since ERP-RM and TRUST both tend to buy
extra resources when facing dynamics, the throughput results
are much better than those of R3-UA and RU-SJF. However,
under some extreme situations, due to the limited resources
of physical servers, ERP-RM may not be able to hold all the
traffic from users. As comparison, TRUST can balance the
load among the servers by updating the requests. As shown in
Figs. 7(a)-7(b), when there are 12 × 104 requests under two
kinds of traffic dynamics, the throughput results of ERP-RM
are a bit lower than those of TRUST.

Figs. 8-9 present the throughputs by varying the update
delay constraint. We can conclude that the throughput results
of TRUST and ERP-RM are always the highest among the
four algorithms. Since both TRUST and ERP-RM adopt elastic
resource provisioning, the requests are all served by upgrading
the configuration type. As a comparison, the request updating
schemes, i.e., RU-SJF and R3-UA, cannot serve all the requests
when facing the traffic dynamics. For instance, in Fig 8(b), the
throughput results of TRUST are always 29.27 Gbps. When
the update delay constraint is set 0.1s, TRUST improves the
throughput by 55.77% and 35.65%, compared with R3-UA

Fig. 10. Badput ratio vs. Number of requests in the small topology.

Fig. 11. Badput ratio vs. Number of requests in the large topology.

Fig. 12. Badput ratio vs. Update delay constraint in the small topology.

and RU-SJF, respectively. In Fig 9(b), when given 1s, TRUST
improves the throughput by 104.47% and 40.13% compared
with R3-UA and RU-SJF, respectively. The throughput results
of RU-SJF are always the same when the update delay
constraint is changing because RU-SJF does not consider the
constraint, while the throughput results of R3-UA increase
when given more time since R3-UA can update more requests.
We should also note that, although ERP-RM achieves the same
results as TRUST does, ERP-RM needs to pay more since it
does not adopt the request updating, as shown in Fig. 4(b).

Figs. 10-11 present the badput ratio of four algorithms.
We can conclude that ERP-RM and TRUST can always
achieve the least badput ratio compared with R3-UA and RU-
SJF. We can observe that the function curves of R3-UA and
RU-SJF fluctuate as the number of requests increases. For
instance, by Fig. 10(b), the badput ratio of R3-UA decreases
when the number of requests ranges from 3× 103 to 7× 103,
and increases when the number of requests is between 8 ×
103 to 12×103, since when the number of requests is ranging
from 3 × 103 to 7 × 103, the configuration types of NFs are
being upgraded. Consequently, as shown in Fig. 2(b), the cost
result of R3-UA is increasing. In general, TRUST decreases
badput by 43% and 28.7% compared with R3-UA and RU-SJF,
respectively, in the large topology.

Figs. 12-13 demonstrate the badput ratio by varying the
update delay constraint. We can conclude from the figures that
the badput ratio results of TRUST and ERP-RM are always
0 when the update delay constraint is changing. The reason
is that TRUST and ERP-RM can upgrade the configuration
of NFs when the traffic dynamics occur by elastic resource
provisioning. As shown in Fig. 12(b), in the small topology,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

120 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 13. Badput ratio vs. Update delay constraint in the large topology.

Fig. 14. Update delay vs. Number of requests in the small topology.

Fig. 15. Update delay vs. Number of requests in the large topology.

Fig. 16. Update delay vs. Update delay constraint in the small topology.

given 0.1s update delay constraint, TRUST can reduce the
badput ratio by 33.49% and 24.73% compared with R3-UA
and RU-SJF, respectively. In Fig. 12(b), when the update delay
constraint is set 2s, TRUST can reduce 48.02% and 28.64%
compared with R3-UA and RU-SJF, respectively. We can also
observe that when given more time, the badput ratio of R3-UA
is decreasing. Although ERP-RM can also achieve 0 badput
ratio, it needs to pay more for extra resources than TRUST
does.

Figs. 14-15 show the update delay of three algorithms. Since
ERP-RM does not involve the updating procedure, we only
compare TRUST with R3-UA and RU-SJF. We learn from
Figs. 14-15 that the update delay of RU-SJF will significantly
increase while TRUST and R3-UA limit the update delay
within a small range. For instance, by Fig. 15(a), when there
are 9 × 104 requests, TRUST can reduce update delay by
78.1% compared with RU-SJF. In Fig. 15(b), when there are
10× 104 requests, TRUST can reduce update delay by 91.5%
compared with RU-SJF.

Figs. 16-17 present the update delay by varying the update
delay constraint. We can conclude that, in general, the update
delay of TRUST and R3-UA will increase as the constraint

Fig. 17. Update delay vs. Update delay constraint in the large topology.

Fig. 18. System throughput vs. time.

Fig. 19. Infrastructure cost vs. Time.

relaxes. Since RU-SJF does not consider the update delay
constraint, the update delay of RU-SJF is much higher than
that of TRUST. For instance, in Fig. 16(b), when given 0.2s,
TRUST can reduce the update delay by 74.14% compared
with RU-SJF. We should note that, in particular situations,
TRUST can even achieve less update delay than R3-UA does.
In Fig. 16(a), when the update delay constraint is set 0.3s, the
actual update delay of TRUST is 0.26s, while that of R3-UA
is 0.3s. The reason is that TRUST combines request updating
and elastic resource provisioning. When given appropriate
configuration types of NFs, there is no need to update requests
as many as R3-UA does.

In the third group of experiments, we mainly focus on
the performance comparison of TRUST and TRUST(x%) dis-
cussed in Section III-A. The results are shown in Figs. 18-19.
We run TRUST every 50 minutes and TRUST(x%) every
10 minutes, where x is set to 1 and 2. In this group of
experiments, we simulate the traffic dynamics according to the
following rules. Overall, the total throughput of cloud users
tends to be steady [64]. However, for every single request,
it may change randomly. We divide requests into the following
parts. 1) 25% of requests will keep the original status. 2) 25%
of requests will increase at most 1.3 times of current traffic
size. 3) 25% of requests’ traffic size will decrease by at most
30%. 4) 25% of requests will terminate while nearly the same
number of requests will arrive.

The throughput and infrastructure costs are shown in
Figs. 18-19. Here total throughput means the total traffic gener-
ated by cloud users. In simulations, some traffic may be denied
due to traffic dynamics and overload NFs. Thus, it is necessary
to test the throughput performance when running differ-
ent schemes, i.e., TRUST and TRUST(x%). From Fig. 18,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: JOINT REQUEST UPDATING AND ELASTIC RESOURCE PROVISIONING 121

although throughput performance will get worse along with
time due to traffic dynamics, TRUST (x%) can further promote
the throughput performance. For instance, in Fig. 18(a), at the
30th minutes, TRUST(1%), TRUST(2%) and TRUST(5%)
improve throughput by 0.72%, 1.14% and 1.38%, respectively,
compared with TRUST. The reason is that if we execute
TRUST(x%) between the interval of TRUST, throughput can
be improved by updating a part of requests and upgrading
NFs. Correspondingly, in Fig. 19(a), the costs of TRUST (x%)
also increase compared with TRUST. For instance, at the
30th minutes, both TRUST(1%) and TRUST(2%) increase
costs by 5.79% compared with TRUST, and TRUST(5%)
increase cost by 3.95% compared with TRUST. However,
after we execute TRUST for a global update at the 50th
minutes, the infrastructure costs of all TRUST(x%) are fewer
than that of TRUST. Since TRUST(x%) updates requests
frequently and there are fewer overloaded NFs, there is no
need to upgrade the NFs as many as TRUST does. The
reason why TRUST(1%) costs more than TRUST(2%) does
is that TRUST(2%) involves more updated requests and NFs.
That is to say, with TRUST(2%), NFs tend to be more
load-balancing compared with TRUST(1%). Therefore, when
we execute Algorithm 1 for a global update at the 50th
minutes, TRUST(2%) can acquire a lower infrastructure cost
compared with TRUST(1%).In conclusion, we can update the
cloud with less cost compared with TRUST.

From these simulation results, we can draw some conclu-
sions. Firstly, compared with ERP-RM, TRUST can signif-
icantly reduce the cost by 35.5%/31.3% on average in the
small/large topology by Figs. 2-3. At the same time, TRUST
only takes a few more seconds of update delay, and it can
still satisfy the QoS demand of users. Figs. 4-5 show that
the cost of TRUST can reduce as the update delay constraint
relaxes. Secondly, compared with R3-UA, TRUST has a much
better performance on throughput and significantly reduces the
badput ratio. From Figs. 6-7, we know that TRUST improves
the throughput by 44.9%/88.9% in the small/large topology
on average compared with R3-UA. When the update delay
constraint is changing, the throughput results of TRUST would
still be the same, as presented in Figs. 8-9. Then, Figs. 10-11
show that TRUST can reduce the badput ratio by 29.1%/43%
in the small/large topology compared with R3-UA. Meanwhile,
TRUST only increases the cost by about 13.79%/8.8% in the
small/large topology compared with R3-UA. And we can see
that when the update delay constraint changes, the badput
ratio of TRUST is always zero, as presented in Figs. 12-13.
Finally, compared with RU-SJF, TRUST can greatly reduce
the update delay. Figs. 14-15 show that in general, TRUST
can reduce 81.8%/86% update delay compared with RU-SJF
in the small/large topology. Also, TRUST can improve the
throughput by 15%-44.8% and reduce the badput ratio by
13.9%-28.7% with cost increased only by 8.8%-13.79% com-
pared with RU-SJF. As the update delay constraint relaxes, the
actual update delay of TRUST would also increase, as shown
in Figs. 16-17. However, there are still particular situations
where TRUST achieves less update delay than the constraint.
Last but not least, compared with TRUST, TRUST(1%) and
TRUST(2%) can further improve the throughput performance
and reduce the cost.

C. Testbed Evaluation
This section implements TRUST on a small-scale testbed

to evaluate the performance of these algorithms.

1) Testbed Settings: To better evaluate our proposed algo-
rithm, we need a universal platform to realize our small-
scale testbed, which should be similar to the real-world
cloud environment. To this end, we choose OpenStack, the
most advanced and widely used cloud infrastructure software,
to implement the system. In general, we adopt the latest
version of OpenStack called Yoga [65] to estimate our algo-
rithm. Using OpenStack’s VM service Nova, we can customize
different flavors, i.e., configuration types, according to Google
Cloud Platform [29], which is shown in Table III. We adopt
Open vSwitch (OvS) of version 2.17.3 as SDN switches, which
is a default software switch of OpenStack platform. The bridge
in OvS used in our experiments is br-int. We use the OpenFlow
protocol of version 1.5 to control the flow entries to direct
flows. The controller is based on Neutron.

In our testbed, we generate 20 instances as NFs, all with
Ubuntu 18.04 OS. The NFs are all initialized as type 1
in Table III. We set 3000 requests and 0.1s update delay
constraint by default. We first run SNAT (Static Network
Address Translation) on 20 NFs by rewriting the iptables
rules to translate the private address into a public address
for online requirements. Then, we set flow data as the same
as the simulations. We also generate an instance for sending
requests and an instance as the controller. First, we use iPerf3
to generate request data. Then, we simulate the dynamics
according to the rule of magnitude dynamics. After the 20 NFs
experiencing load-unbalancing, we acquire the joint updating
solutions by running the algorithm. Finally, the controller
sends new rules to the corresponding NF to reroute the request,
and new configurations are also updated. Then we clarify how
we execute some important procedures.

How we apply scaling to NFs: OpenStack provides a
computing service called Nova to help create and manage NFs.
It allows us to customize flavor, i.e., different configurations
for NFs. For instance, Nova allows users to specify RAM,
vCPU, disk volume and other parameters in a flavor. When
creating an NF, a flavor must be specified. Due to traffic
dynamics, the flavor of an NF may be inappropriate along
with time. Thus, Nova also provides interface to resize an
NF, i.e., the command OpenStack server resize NF-NAME
Flavor-NAME [66]. After acquiring the algorithm results,
we can execute the corresponding command to resize NFs
from current configuration to the new configuration. With the
advancement of work [67], the resizing duration can only take
from sub-one millisecond to the order of four milliseconds,
which is negligible compared with requests updating.

How we redirect flows: We design the controller based
on Neutron, the network managing service provided by Open-
Stack, responsible for sending/modifying flow rules. The spe-
cific flow rules setting is done by Neutron-openvswitch-agent.
Next, we clarify how we redirect flows. First, we use iPerf3 to
create and send flows. Each flow is corresponding to one flow
entry stored in br-int. Flow entry will check the matching field
(e.g., source ip and source port) to determine the corresponding
action, i.e., choosing which NF to send the flow. For instance,
flow 1 is sent from source port 12345. Then, in the matching
field, the corresponding action determines that it will be sent
to NF2. After updating, the algorithm decides that flow 1
needs to be redirected to NF3. Correspondingly, we use
RESTful API to send results to Neutron server by HTTP.
Then, Neutron server would use message queue (RabbitMQ) to
modify the corresponding rules by sending flow-mod messages
to Neutron-openvswitch-agent, which are mainly ovs-ofctl

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

122 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 20. Cost vs. Number of requests.

Fig. 21. Cost vs. Update delay constraint.

Fig. 22. Throughput vs. Number of requests.

Fig. 23. Badput ratio vs. Number of requests.

commands [68]. Finally, it will be redirected to the correct
NF.

How we set up the switches, the controller and time
threshold: We adopt Open vSwitch (OvS) of version 2.17.3 as
SDN switches, which is a default software switch of Open-
Stack platform. The controller is based on Neutron. When the
algorithm for TRUST acquires an update solution, the con-
troller will generate corresponding messages and commands.
The time threshold is an input parameter of the algorithm. The
setting of the time threshold accords to the network status,
0.1s by default in our experiments. Then we can use current
network information (e.g., NFs configuration, NFs load and
traffic size) to execute an algorithm for joint elasticity scaling
and request updating solutions.

2) Performance Comparison: We run six sets of testbed
experiments to compare the performance of ERP-RM, TRUST,
R3-UA and RU-SJF, and the results are shown in Figs. 20-26.

The first set of experiments evaluates the infrastructure
cost by varying the number of requests and the update
delay constraint. We record each NF’s configuration type and

Fig. 24. RTT vs. Number of requests.

Fig. 25. Packet loss ratio vs. Number of requests.

Fig. 26. FCT vs. Number of requests.

calculate the total infrastructure cost and the results are shown
in Figs. 20 and 21. We observe that in Fig. 20(a), given 3 ×
103 requests, TRUST can reduce the cost by 41.17% compared
with ERP-RM. Since TRUST takes the advantage of request
updating, the purchased resources of TRUST are much fewer
than that of ERP-RM. In Fig. 20(b), given 4 × 103 requests,
TRUST reduces the cost by 25.41% compared with ERP-
RM. In Fig. 21, we show the infrastructure cost by varying
the update delay constraint. We can infer that in general, the
cost results of TRUST decrease as the update delay constraint
relaxes. For example, in both Figs. 21(a) and 21(b), when
the update delay is 0, the cost result of TRUST is almost
the same as that of ERP-RM since TRUST is unable to
transfer any requests. In Fig. 21(a), given 0.2s update delay,
TRUST can reduce 41.71% infrastructure cost compared with
ERP-RM and only increase cost by 9.14% compared with both
R3-UA and RU-SJF. In Fig. 21(b), however, TRUST cannot
significantly reduce cost when given enough update delay. This
is because when facing the magnitude dynamics, we always
need to buy extra resources.

The second set of experiments compares the throughput
performance by varying the number of requests, and the results
are shown in Fig. 22. In Fig. 22(a), we can observe that the
throughput performance of TRUST is similar to that of R3-UA
and RU-SJF. For instance, when there are 3 × 103 requests,
TRUST only improves the throughput by 9.05% and 7.06%
compared with R3-UA and RU-SJF, respectively. As compar-
ison, when facing the magnitude, in Fig. 22(b), TRUST out-
performs R3-UA and RU-SJF greatly. Given 4× 103 requests,
TRUST improves throughput by 80.03% and 52.59% com-
pared with R3-UA and RU-SJF, respectively. Since the two

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: JOINT REQUEST UPDATING AND ELASTIC RESOURCE PROVISIONING 123

request updating schemes do not upgrade the configuration,
NFs have to abandon many requests beyond their capacity,
resulting in a bad throughput.

The third set of experiments demonstrates the badput ratio
performance by varying the number of requests and the results
are shown in Fig. 23. We can learn that since both ERP-RM
and TRUST adopt the elastic resource provisioning, NFs can
upgrade the configuration type during traffic dynamics. Thus,
the badput ratio results are always 0. As a comparison, the
badput ratio results of R3-UA and RU-SJF are changing when
the number of requests grows. For instance, in Fig. 23(a), given
3× 103 requests, TRUST reduces the badput ratio by 8.30%
and 6.59% compared with R3-UA and RU-SJF, respectively.
And in Fig. 23(b), given 4×103 requests, TRUST reduces the
badput ratio by 44.45% and 34.47% compared with R3-UA
and RU-SJF, respectively.

The fourth set of experiments compares the average RTT
of NFs by varying the number of requests and the results
are shown in Fig. 24. We can see the average RTT results
of ERP-RM and TRUST are always the lowest since the two
schemes will buy extra resources when the current capacity
of NFs cannot hold requests. As a comparison, the request
updating schemes, i.e., R3-UA and RU-SJF, cannot solve
the insufficient capacity problem. Consequently, there may
exist many NFs overloaded. In Fig. 24(a), when given 5 ×
103 requests, TRUST can reduce the average RTT by 37.87%
and 39.68% compared with R3-UA and RU-SJF, respectively.
In Fig. 24(b), when there are 1×103 requests, TRUST reduces
the average RTT by 62.6% and 61.08% compared with R3-UA
and RU-SJF, respectively.

The fifth set of experiments compares the average packet
loss ratio by varying the number of requests and the results
are shown in Fig. 25. Generally, the average packet loss
ratio results of ERP-RM and TRUST are always the lowest
among the four schemes, since both two methods tend to buy
enough resources to handle requests. In Fig. 25(a), when the
number of requests is 3× 103, TRUST can reduce 91.7% and
90.3% packet loss ratio compared with R3-UA and RU-SJF,
respectively. And in Fig. 25(b), when the number of requests
are 1 × 103, TRUST can reduce 94.4% and 94.11% packet
loss ratio compared with R3-UA and RU-SJF, respectively.

The sixth set of experiments compares the average flow
completion time (FCT) of requests by varying the number of
requests and the results are shown in Fig. 26. The FCT of
a single request mainly depends on its traffic size and link
bandwidth. If the request is transferred, the time for updating
rules is also included. The FCT results of ERP-RM are always
the lowest because ERP-RM does not involve updating the
requests. Overall, the FCT results of TRUST and R3-UA
decrease as the number of requests grows, since the update
delay constraint is fixed, i.e., the number of requests is also
constrained. Consequently, the average FCT will decrease as
the number of total requests increases. In Fig. 26(a), when
given 3 × 103 requests in the cloud, TRUST can reduce the
average FCT by 12.56% compared with RU-SJF and only
increase the average FCT by about 10.76% compared with
ERP-RM. And in Fig. 26(b), TRUST can reduce the average
FCT by 22.34% compared with RU-SJF. We can also see from
the figure that, when the number of requests is 5 × 103, the
FCT of RU-SJF significantly decreases, since at this time,
the configuration of NFs have been upgraded, which can
be inferred from Fig. 20(b). The reason why TRUST and
R3-UA can achieve a much lower FCT than that of RU-SJF,

is that TRUST and R3-UA can limit the number of updating
requests.

From the above experimental results, we can draw some
conclusions. Firstly, TRUST reduces the cost by 41.71%
and only increases the average FCT by 10.76% compared
with ERP-RM. Secondly, TRUST improves the throughput
performance by 80.03% and 52.59% compared with R3-UA
and RU-SJF, respectively. And TRUST reduces the badput
ratio by 44.45% and 34.47% compared with R3-UA and RU-
SJF, respectively. Thirdly, compared with R3-UA and RU-
SJF, TRUST can acquire a much better RTT and packet loss
ratio result. TRUST reduces the average RTT by 37.87%
and 39.68% compared with R3-UA and RU-SJF, respectively.
And TRUST reduces the average packet loss ratio by 91.7%
and 90.3% compared with R3-UA and RU-SJF, respectively.
Finally, TRUST can reduce the average FCT by 22.34%
compared with RU-SJF. These experimental results show the
high efficiency and cost-saving of TRUST.

Another approach to deal with traffic dynamics, i.e., request
updating, usually focuses on the load-balancing [10], [11],
[75], [76] or makespan [13], [77], [78]. For instance, the
work [75] proposes a distributed and adaptive algorithm for
load balancing in data center networks when facing random
especially dynamic traffic patterns. And the work [77] pro-
poses an algorithm with an arbitrarily-good approximation
factor to schedule requests on a multiprocessor achieving the
optimal makespan. However, all these works cannot avoid
the delay caused by the update, which may severely damage
the users’ QoS. Furthermore, frequent update may affect the
consistency of requests. Thus, we believe request updating
and elastic resource provisioning can be complementary to
each other, to help service providers save more cost while
guaranteeing users’ QoS.

V. RELATED WORKS

As the virtualization technique develops, both academia and
industry have been exploring elasticity in cloud computing
from all aspects. In general, current elastic resource provi-
sioning has two methods: reactive mode [36], [69], [70], [71]
and proactive mode [30], [72], [73], [74]. Specifically, reactive
mode means there exist several certain thresholds or rules to
trigger the elastic resource provisioning. For instance, when
reaching a specific amount of workload or resource utilization,
the traffic dynamics will be detected and elastic actions will
be executed. Overall, the thresholds can be divided into two
kinds: static and dynamic. Static thresholds, like [36] and
[69] will monitor one or more metrics, when the threshold is
reached, the configuration will be upgraded. The other scheme
adopts the dynamic threshold [70], [71], which is more agile
and efficient. Specifically, the thresholds change dynamically
according to the state of VMs or NFs. The work [70] adopts
the dynamic CPU utilization as the thresholds. Proactive mode,
as a comparison, adopts forecasting techniques to anticipate
the potential future resource utilization and execute elastic
actions based on the anticipation. The work [72] and [73] both
adopt the time series analysis technique while [30], [74] use
reinforcement learning to make decisions. However, we should
note that no matter what mode we adopt, we always need
to pay for the extra resources we used. Thus, combining
the request updating technique is an excellent complementary
work to save cost.

Another approach to deal with traffic dynamics, i.e., request
updating, usually focuses on the load-balancing [10], [11],

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

124 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

[75], [76] or makespan [13], [77], [78]. For instance, the
work [75] proposes a distributed and adaptive algorithm for
load balancing in data center networks when facing random
especially dynamic traffic patterns. And the work [77] pro-
poses an algorithm with an arbitrarily-good approximation
factor to schedule requests on a multiprocessor achieving the
optimal makespan. However, all these works cannot avoid
the delay caused by the update, which may severely damage
the users’ QoS. Furthermore, frequent update may affect the
consistency of requests. Thus, we believe request updating
and elastic resource provisioning can be complementary to
each other, to help service providers save more cost while
guaranteeing users’ QoS.

VI. CONCLUSION

In this paper, we focus on the problem of real-time request
updating with elastic resource provisioning in clouds. To solve
the problem, we design an efficient algorithm with bounded
approximation factors based on progressive-rounding. Exten-
sive simulation and testbed experiments results show the high
efficiency of our proposed algorithm.

REFERENCES

[1] J. Wang, G. Zhao, H. Xu, Y. Zhao, X. Yang, and H. Huang, “TRUST:
Real-time request updating with elastic resource provisioning in clouds,”
in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2022,
pp. 620–629.

[2] M. M. Sadeeq, N. M. Abdulkareem, S. R. M. Zeebaree, D. M. Ahmed,
A. S. Sami, and R. R. Zebari, “IoT and cloud computing issues,
challenges and opportunities: A review,” Qubahan Academic J., vol. 1,
no. 2, pp. 1–7, Mar. 2021.

[3] I. M. Ibrahim, “Task scheduling algorithms in cloud computing: A
review,” Turkish J. Comput. Math. Educ. (TURCOMAT), vol. 12, no. 4,
pp. 1041–1053, Apr. 2021.

[4] M. Armbrust et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[5] B. Andrei, “Threat modeling of cloud systems with ontological security
pattern catalog,” Int. J. Open Inf. Technol., vol. 9, no. 5, pp. 36–41,
2021.

[6] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Autoscaling tiered cloud
storage in anna,” VLDB J., vol. 30, no. 1, pp. 25–43, Jan. 2021.

[7] Y. Zhang, G. Lin, H. Gu, F. Zhuang, and G. Wei, “Multi-copy dynamic
cloud data auditing model based on IMB tree,” Enterprise Inf. Syst.,
vol. 15, no. 2, pp. 248–269, Feb. 2021.

[8] Y. Zhou, L. Ruan, L. Xiao, and R. Liu, “A method for load balancing
based on software defined network,” Adv. Sci. Technol. Lett., vol. 45,
pp. 43–48, Feb. 2014.

[9] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of
service constraints,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7,
pp. 1366–1379, Jul. 2013.

[10] S. Bharti and K. K. Pattanaik, “Dynamic distributed flow scheduling with
load balancing for data center networks,” Proc. Comput. Sci., vol. 19,
pp. 124–130, Jan. 2013.

[11] Z. Guo et al., “AggreFlow: Achieving power efficiency, load balancing,
and quality of service in data center networks,” IEEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 17–33, Feb. 2021.

[12] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading tasks
with dependency and service caching in mobile edge computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 11, pp. 2777–2792, Nov. 2021.

[13] P. Wang, Y. Lei, P. R. Agbedanu, and Z. Zhang, “Makespan-driven
workflow scheduling in clouds using immune-based PSO algorithm,”
IEEE Access, vol. 8, pp. 29281–29290, 2020.

[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE ICNN, vol. 4, Nov./Dec. 1995, pp. 1942–1948.

[15] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
3rd Workshop Hot Topics Softw. Defined Netw., 2014, pp. 1–6.

[16] F. Yamei, L. Qing, and H. Qi, “Research and comparative analysis
of performance test on SDN controller,” in Proc. 1st IEEE Int. Conf.
Comput. Commun. Internet (ICCCI), Oct. 2016, pp. 207–210.

[17] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, and Y. Sun, “Minimizing
controller response time through flow redirecting in SDNs,” IEEE/ACM
Trans. Netw., vol. 26, no. 1, pp. 562–575, Feb. 2018.

[18] M. Dolati, A. Khonsari, and M. Ghaderi, “Minimizing update makespan
in SDNs without TCAM overhead,” IEEE Trans. Netw. Service Manage.,
vol. 19, no. 2, pp. 1598–1613, Jun. 2022.

[19] G. Li, Y. R. Yang, F. Le, Y. Lim, and J. Wang, “Update algebra:
Toward continuous, non-blocking composition of network updates in
SDN,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Apr. 2019,
pp. 1081–1089.

[20] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 42, no. 4, pp. 323–334, Aug. 2012, doi: 10.1145/
2377677.2377748.

[21] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 15–26, Aug. 2013, doi: 10.1145/2534169.2486012.

[22] H. H. Gharakheili, M. Lyu, Y. Wang, H. Kumar, and V. Sivaraman, “ITe-
leScope: Softwarized network middle-box for real-time video telemetry
and classification,” IEEE Trans. Netw. Service Manage., vol. 16, no. 3,
pp. 1071–1085, Sep. 2019.

[23] W. J. A. Silva, “Avoiding inconsistency in OpenFlow stateful applica-
tions caused by multiple flow requests,” in Proc. Int. Conf. Comput.,
Netw. Commun. (ICNC), Mar. 2018, pp. 548–553.

[24] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provi-
sioning cost in cloud computing,” IEEE Trans. Services Comput., vol. 5,
no. 2, pp. 164–177, Jun. 2012.

[25] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity
provisioning system for the cloud,” in Proc. 31st Int. Conf. Distrib.
Comput. Syst., Jun. 2011, pp. 559–570.

[26] M. Nardelli, C. Hochreiner, and S. Schulte, “Elastic provisioning of
virtual machines for container deployment,” in Proc. 8th ACM/SPEC
Int. Conf. Perform. Eng. Companion, Apr. 2017, pp. 5–10.

[27] A. da Silva Dias, L. H. V. Nakamura, J. C. Estrella, R. H. C. Santana,
and M. J. Santana, “Providing IaaS resources automatically through
prediction and monitoring approaches,” in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jun. 2014, pp. 1–7.

[28] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in
cloud computing: State of the art and research challenges,” IEEE Trans.
Services Comput., vol. 11, no. 2, pp. 430–447, Mar. 2018.

[29] Google Cloud Platform. Accessed: Jun. 1, 2023. [Online]. Available:
https://cloud.google.com/compute/vm-instance-pricing

[30] A. Ashraf, B. Byholm, and I. Porres, “CRAMP: Cost-efficient resource
allocation for multiple web applications with proactive scaling,” in
Proc. 4th IEEE Int. Conf. Cloud Comput. Technol. Sci., Dec. 2012,
pp. 581–586.

[31] P. Marshall, K. Keahey, and T. Freeman, “Elastic site: Using clouds to
elastically extend site resources,” in Proc. 10th IEEE/ACM Int. Conf.
Cluster, Cloud Grid Comput., May 2010, pp. 43–52.

[32] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: Elastic resource
scaling for multi-tenant cloud systems,” in Proc. 2nd ACM Symp. Cloud
Comput., Oct. 2011, pp. 1–14.

[33] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. 15th {USENIX}
Symp. Netw. Syst. Design Implement. (NSDI), 2018, pp. 299–312.

[34] M. Karzand, D. J. Leith, J. Cloud, and M. Médard, “Design of FEC
for low delay in 5G,” IEEE J. Sel. Areas Commun., vol. 35, no. 8,
pp. 1783–1793, Aug. 2017.

[35] H. Xu, Z. Yu, X. Li, L. Huang, C. Qian, and T. Jung, “Joint route
selection and update scheduling for low-latency update in SDNs,”
IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 3073–3087, Oct. 2017.

[36] S. M.-K. Gueye, N. D. Palma, É. Rutten, A. Tchana, and N.
Berthier, “Coordinating self-sizing and self-repair managers for multi-
tier systems,” Future Gener. Comput. Syst., vol. 35, pp. 14–26,
Jun. 2014.

[37] H. Tu, G. Zhao, H. Xu, Y. Zhao, and Y. Zhai, “Robustness-aware real-
time SFC routing update in multi-tenant clouds,” in Proc. IEEE/ACM
29th Int. Symp. Quality Service (IWQOS), Jun. 2021, pp. 1–6.

[38] M. Nosrati, R. Karimi, and M. Hariri, “Task scheduling algorithms
introduction,” World Appl. Program., vol. 2, no. 6, pp. 394–398,
2017.

[39] W. Yu, L. Musavian, and Q. Ni, “Link-layer capacity of NOMA under
statistical delay QoS guarantees,” IEEE Trans. Commun., vol. 66, no. 10,
pp. 4907–4922, Oct. 2018.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2377677.2377748
http://dx.doi.org/10.1145/2377677.2377748
http://dx.doi.org/10.1145/2377677.2377748
http://dx.doi.org/10.1145/2534169.2486012

ZHAO et al.: JOINT REQUEST UPDATING AND ELASTIC RESOURCE PROVISIONING 125

[40] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
“Traffic matrix estimation: Existing techniques and new directions,”
in Proc. Conf. Appl., Technol., Archit., Protocols Comput. Commun.,
Aug. 2002, pp. 161–174, doi: 10.1145/633025.633041.

[41] A. Gunnar, M. Johansson, and T. Telkamp, “Traffic matrix estimation
on a large IP backbone: A comparison on real data,” in Proc. 4th
ACM SIGCOMM Conf. Internet Meas., Oct. 2004, pp. 149–160, doi:
10.1145/1028788.1028807.

[42] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic matrix
estimator for openflow networks,” in Passive and Active Measurement,
A. Krishnamurthy and B. Plattner, Eds. Berlin, Germany: Springer, 2010,
pp. 201–210.

[43] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, “CountMax: A
lightweight and cooperative sketch measurement for software-defined
networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2774–2786,
Dec. 2018.

[44] H. Xu, Z. Yu, X. Li, C. Qian, L. Huang, and T. Jung, “Real-time
update with joint optimization of route selection and update scheduling
for SDNs,” in Proc. IEEE 24th Int. Conf. Netw. Protocols (ICNP),
Nov. 2016, pp. 1–10.

[45] H. Jahanjou, R. Rajaraman, and D. Stalfa, “Scheduling flows on
a switch to optimize response times,” in Proc. 32nd ACM Symp.
Parallelism Algorithms Architectures, Jul. 2020, pp. 305–315, doi:
10.1145/3350755.3400218.

[46] G. Patti, L. L. Bello, and L. Leonardi, “Deadline-aware online schedul-
ing of TSN flows for automotive applications,” IEEE Trans. Ind.
Informat., vol. 19, no. 4, pp. 5774–5784, Apr. 2023.

[47] Q. Zhou, P. Li, K. Wang, D. Zeng, S. Guo, and M. Guo, “Swallow: Joint
online scheduling and coflow compression in datacenter networks,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2018,
pp. 505–514.

[48] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“ZUpdate: Updating data center networks with zero loss,” ACM SIG-
COMM Comput. Commun. Rev., vol. 43, no. 4, pp. 411–422, Aug. 2013,
doi: 10.1145/2534169.2486005.

[49] C. Huang, J. Zhang, and T. Huang, “Updating data-center network with
ultra-low latency data plane,” IEEE Access, vol. 8, pp. 2134–2144, 2020.

[50] J. Fang, G. Zhao, H. Xu, C. Wu, and Z. Yu, “GRID: Gradient routing
with in-network aggregation for distributed training,” IEEE/ACM Trans.
Netw., early access, Feb. 22, 2023, doi: 10.1109/TNET.2023.3244794.

[51] X. Wen et al., “RuleTris: Minimizing rule update latency for TCAM-
based SDN switches,” in Proc. IEEE 36th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2016, pp. 179–188.

[52] S. Martello and P. Toth, “Bin-packing problem,” in Knapsack Problems:
Algorithms Computer Implementations. Hoboken, NJ, USA: Wiley,
1990, pp. 221–245.

[53] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and
multi-commodity flow problems,” in Proc. 16th Annu. Symp. Found.
Comput. Sci. (SFCS), Oct. 1975, pp. 184–193.

[54] B. Heller et al., “Elastictree: Saving energy in data center networks,” in
Proc. USENIX NSDI, vol. 10, 2010, pp. 249–264.

[55] Y. Xu et al., “Dynamic switch migration in distributed software-defined
networks to achieve controller load balance,” IEEE J. Sel. Areas Com-
mun., vol. 37, no. 3, pp. 515–529, Mar. 2019.

[56] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic
vertical elasticity of Docker containers with ELASTICDOCKER,” in
Proc. IEEE 10th Int. Conf. Cloud Comput. (CLOUD), Jun. 2017,
pp. 472–479.

[57] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and
X. Koutsoukos, “Performance interference-aware vertical elasticity for
cloud-hosted latency-sensitive applications,” in Proc. IEEE 11th Int.
Conf. Cloud Comput. (CLOUD), Jul. 2018, pp. 82–89.

[58] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” in Proc. ACM/IEEE 41st Int. Symp. Comput. Archit. (ISCA),
Jun. 2014, pp. 301–312.

[59] P. Raghavan and C. D. Tompson, “Randomized rounding: A technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, Dec. 1987.

[60] Pulp. Accessed: Jun. 1, 2023. [Online]. Available: https://pypi.org/
project/PuLP/

[61] V. Apte, “‘What did I learn in performance analysis last year?’:
Teaching queuing theory for long-term retention,” in Proc. Companion
ACM/SPEC Int. Conf. Perform. Eng., Mar. 2019, pp. 71–77.

[62] Google Cluster Data. Accessed: Jun. 1, 2023. [Online]. Available:
https://www.github.com/google/cluster-data

[63] A. Ali-Eldin, O. Seleznjev, S. Sjöstedt-de Luna, J. Tordsson, and
E. Elmroth, “Measuring cloud workload burstiness,” in Proc. IEEE/ACM
7th Int. Conf. Utility Cloud Comput., Dec. 2014, pp. 566–572.

[64] W. Shi and B. Hong, “Resource allocation with a budget constraint for
computing independent tasks in the cloud,” in Proc. IEEE 2nd Int. Conf.
Cloud Comput. Technol. Sci., Dec. 2010, pp. 327–334.

[65] Openstack Yoga. Accessed: Jun. 1, 2023. [Online]. Available:
https://docs.openstack.org/Yoga/

[66] Nova. Accessed: Jun. 1, 2023. [Online]. Available: https://docs.open
stack.org/newton/user-guide/cli-change-the-size-of-your-server.html

[67] S. Heuchert, B. P. Rimal, M. Reisslein, and Y. Wang, “Design of a small-
scale and failure-resistant IaaS cloud using OpenStack,” Appl. Comput.
Inform., Sep. 2021, doi: 10.1108/ACI-04-2021-0094.

[68] Neutron. Accessed: Jun. 1, 2023. [Online]. Available: https://docs.
openstack.org/api-ref/network/index.html

[69] P. D. Kaur and I. Chana, “A resource elasticity framework for QoS-
aware execution of cloud applications,” Future Gener. Comput. Syst.,
vol. 37, pp. 14–25, Jul. 2014.

[70] L. M. Vaquero, D. Morán, F. Galán, and J. M. Alcaraz-Calero, “Towards
runtime reconfiguration of application control policies in the cloud,”
J. Netw. Syst. Manage., vol. 20, no. 4, pp. 489–512, Dec. 2012.

[71] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers,”
MGC@ Middleware, vol. 4, Dec. 2010, Art. no. 1890799.

[72] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier internet applications,” ACM Trans.
Auto. Adapt. Syst., vol. 3, no. 1, pp. 1–39, Mar. 2008.

[73] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid
reinforcement learning approach to autonomic resource allocation,” in
Proc. IEEE Int. Conf. Autonomic Comput., Jun. 2006, pp. 65–73.

[74] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and
self-configured CPU resource provisioning for virtualized servers using
Kalman filters,” in Proc. 6th Int. Conf. Autonomic Comput., Jun. 2009,
pp. 117–126.

[75] C.-M. Cheung and K.-C. Leung, “DFFR: A flow-based approach for
distributed load balancing in data center networks,” Comput. Commun.,
vol. 116, pp. 1–8, Jan. 2018.

[76] S. Bharti and K. K. Pattanaik, “Dynamic distributed flow scheduling for
effective link utilization in data center networks,” J. High Speed Netw.,
vol. 20, no. 1, pp. 1–10, 2014.

[77] D. P. Bunde, “Power-aware scheduling for makespan and flow,” J.
Scheduling, vol. 12, no. 5, pp. 489–500, Oct. 2009.

[78] R. Aggoune, “Minimizing the makespan for the flow shop scheduling
problem with availability constraints,” Eur. J. Oper. Res., vol. 153, no. 3,
pp. 534–543, Mar. 2004.

Gongming Zhao (Member, IEEE) received the
Ph.D. degree in computer software and theory from
the University of Science and Technology of China
in 2020. He is currently an Associate Professor
with the University of Science and Technology of
China. His current research interests include soft-
ware defined networks and cloud computing.

Jingzhou Wang (Graduate Student Member, IEEE)
is currently pursuing the Ph.D. degree in computer
science with the University of Science and Technol-
ogy of China. His main research interests include
software defined networks and cloud computing.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/633025.633041
http://dx.doi.org/10.1145/1028788.1028807
http://dx.doi.org/10.1145/3350755.3400218
http://dx.doi.org/10.1145/2534169.2486005
http://dx.doi.org/10.1109/TNET.2023.3244794
http://dx.doi.org/10.1108/ACI-04-2021-0094

126 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Hongli Xu (Member, IEEE) received the B.S. degree
in computer science and the Ph.D. degree in com-
puter software and theory from the University of
Science and Technology of China (USTC), China,
in 2002 and 2007, respectively. He is currently
a Professor with the School of Computer Science
and Technology, USTC. He has published more
than 100 articles in famous journals and confer-
ences, including IEEE/ACM TRANSACTIONS ON
NETWORKING, IEEE TRANSACTIONS ON MOBILE
COMPUTING, IEEE TRANSACTIONS ON PARAL-

LEL AND DISTRIBUTED SYSTEMS, International Conference on Computer
Communications (INFOCOM), and International Conference on Network
Protocols (ICNP). He has held more than 30 patents. His research interests
include software defined networks, edge computing, and the Internet of
Things. He was awarded the Outstanding Youth Science Foundation of NSFC
in 2018. He has won the best paper award and the best paper candidate in
several famous conferences.

Yangming Zhao (Member, IEEE) received the B.S.
degree in communication engineering and the Ph.D.
degree in communication and information system
from the University of Electronic Science and Tech-
nology of China, in 2008 and 2015, respectively.
He is a Research Professor with the School of Com-
puter Science and Technology, University of Sci-
ence and Technology of China. Before that, he was
a Research Scientist with University at Buffalo.
His research interests include network optimization,
quantum networks, edge computing, and machine
learning.

Xuwei Yang received the Ph.D. degree in computer
software and theory from the University of Science
and Technology of China in 2021. He is currently
a Software Engineer with Huawei Cloud Comput-
ing Technology Company Ltd. His current research
interests include software defined networks, cloud
computing, and network function virtualization.

He Huang (Member, IEEE) received the Ph.D.
degree from the School of Computer Science
and Technology, University of Science and
Technology of China (USTC), China, in 2011.
From 2019 to 2020, he was a Visiting Research
Scholar with Florida University, Gainesville, FL,
USA. He is currently a Professor with the School
of Computer Science and Technology, Soochow
University, China. He has authored more than
100 papers in related international conference
proceedings and journals. His current research

interests include traffic measurement, computer networks, and algorithmic
game theory. He is a member of the Association for Computing Machinery
(ACM). He has served as the Technical Program Committee Member for
several conferences, including IEEE INFOCOM, IEEE MASS, IEEE ICC,
and IEEE Globecom. He received the Best Paper Awards from Bigcom 2016,
IEEE MSN 2018, and Bigcom 2018.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:19:21 UTC from IEEE Xplore. Restrictions apply.

