
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023 3063

Scalable and Robust East-West Forwarding
Framework for Hyperscale Clouds

Qianyu Zhang , Gongming Zhao , Member, IEEE, Liguang Xie , Senior Member, IEEE,
Hongli Xu , Member, IEEE, Zhuolong Yu, Yangming Zhao , Chunming Qiao , Fellow, IEEE,

Liusheng Huang , Senior Member, IEEE, and Ying Xiong

Abstract— With the broad deployment of distributed appli-
cations on clouds, east-west traffic is now dominating the
majority of cloud networks. The existing communication solu-
tions are tightly coupled with either the control plane (e.g.,
preprogrammed model) or the location of compute nodes (e.g.,
conventional gateway model). As a result, it is difficult to flexibly
respond to the rapidly expanding networks and frequent abnor-
mal events (e.g., burst traffic and device failures). Accordingly,
they may not provide high-performance east-west forwarding
while ensuring scalability and robustness. To address this issue,
we design Zeta, a scalable and robust east-west forwarding
framework with gateway clusters for hyperscale clouds. Zeta
abstracts the traffic forwarding capability as a Gateway Cluster
Layer, decoupled from the logic of control plane and the location
of compute nodes. Specifically, Zeta adopts gateway clusters
to support large-scale networks and cope with burst traffic.
Moreover, a transparent Multi IPs Migration is proposed for
fast recovery from unpredictable failures. We implement Zeta
based on eXpress Data Path (XDP) and evaluate its scalability
and robustness through comprehensive experiments with up to
100k container instances. Our evaluation shows that Zeta reduces
the 99% RTT by 5.1× in burst video traffic, and reduces the
gateway pure recovery delay by 10.8× compared with the state-
of-the-art solutions.

Index Terms— East-west forwarding, hyperscale clouds, scala-
bility, robustness.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) separates the
control plane and data plane [2], and its concepts and

Manuscript received 23 February 2022; revised 25 October 2022;
accepted 16 April 2023; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor J. Llorca. Date of publication 8 May 2023; date of current
version 19 December 2023. This work was supported in part by the National
Science Foundation of China (NSFC) under Grant 62102392, in part by the
National Science Foundation of Jiangsu Province under Grant BK20210121,
in part by the Hefei Municipal Natural Science Foundation under Grant
2022013, and in part by the Youth Innovation Promotion Association of
Chinese Academy of Sciences (CAS) under Grant 2023481. Some preliminary
results of this paper were published in the Proceedings of USENIX NSDI
2022 [1]. (Corresponding author: Gongming Zhao.)

Qianyu Zhang, Gongming Zhao, Hongli Xu, Yangming Zhao, and
Liusheng Huang are with the School of Computer Science and Tech-
nology, University of Science and Technology of China, Hefei, Anhui
230027, China, and also with the Suzhou Institute for Advanced
Research, University of Science and Technology of China, Suzhou, Jiangsu
215123, China (e-mail: zqy2019@mail.ustc.edu.cn; gmzhao@ustc.edu.cn;
xuhongli@ustc.edu.cn; zhaoym.ustc@gmail.com; lshuang@ustc.edu.cn).

Liguang Xie and Ying Xiong are with Futurewei Technologies Inc., Santa
Clara, CA 95050 USA (e-mail: lxie@futurewei.com; yxiong@futurewei.com).

Zhuolong Yu is with the Department of Computer Science, Johns Hopkins
University, Baltimore, MD 21218 USA (e-mail: zhuolong@cs.jhu.edu).

Chunming Qiao is with the Department of Computer Science and Engineer-
ing, SUNY at Buffalo, Buffalo, NY 14260 USA (e-mail: qiao@buffalo.edu).

Digital Object Identifier 10.1109/TNET.2023.3269772

technologies are the cornerstones of current hyperscale cloud
networks [3], [4]. With an increasing number of distributed
applications on clouds, east-west communication between
instances has become the majority load (even up to 75% [5]) in
cloud networks [6]. The management and installation methods
of flow entries in SDN, including proactive model and reactive
model, will significantly affect the forwarding delay and
network scale [7]. Similarly, the installation of the forwarding
rules is critical for high-performance, scalable and robust
east-west communication in cloud networks. However, two
factors bring much pressure on cloud networks. First, a hyper-
scale cloud can accommodate over 100k servers and millions
of instances with Pbps bandwidth [8], bringing congestion
risks to the network. According to the five-month monitoring
of a network with 27.6k servers, there exists at least one highly
congested region for more than 56% of uptime, and these
congestion regions have a maximum size of 2324 links [9].
Second, containerization leads to centralized startup and short
life cycles of instances, which bring great dynamics to the net-
work. For example, Google launches several billion containers
per week into Google Cloud [10], [11].

As a result, the east-west forwarding faces several chal-
lenges in large-scale and highly dynamic cloud networks. (1)
Scalability. The expansion of the instances scale in cloud
networks leads to a rapid increase in forwarding rules con-
sumption. For example, the control plane will install 487M
rules for a preprogrammed network with 40k instances [4],
which increases forwarding delay due to the rules lookup.
Therefore, installment of numerous rules will limit the scale-up
of both single VPC and the whole network. (2) Robustness.
Although the failure probability of a specific equipment is
usually low, network abnormal events in hyperscale clouds are
frequent and inevitable, including device failures [12], [13]
and burst traffic [14], [15]. They pose severe network con-
gestion/interruption and degrade the tenants’ experience. (3)
Latency. The delays of configuring forwarding rules and estab-
lishing/resuming communication are crucial metrics. When
instances launch/migrate, some previous solutions require the
control plane to inform all relevant hosts and install/update
rules, which especially affects short-lived tasks. For example,
a function task (e.g., MilliSort and MilliQuery [16]) usually
completes in milliseconds, while it may take a few seconds to
launch a function instance and establish connection for it.

The existing east-west forwarding solutions in cloud net-
works are usually divided into two main categories. One is
the hardware solutions, such as AWS Nitro System [17],
[18], Azure FPGA-based SmartNIC [19], [20], [21], [22] and
AliCloud P4-based Gateway [23]. The other is the software
solutions, including the preprogrammed model (e.g., VMware

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3805-4480
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0002-3764-9888
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-4194-3024
https://orcid.org/0000-0002-4679-6572
https://orcid.org/0000-0001-8417-3256

3064 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 1. Three Typical East-West Forwarding Models. (a) Neutron model realizes layer-2 communication by learning MAC address and utilizes DVR (qrouters)
for layer-3 communication. (b) Preprogrammed model pre-installs all potential rules when launching VMs. (c) Gateway model pre-installs default rules pointing
to the gateway on the host. The gateway forwards the header packets, and the direct path rules of elephant flows will be offloaded to the source hosts.

NSX [3], [24]) and the gateway model (e.g., Google Cloud
Hoverboard [4]). Considering the high cost and long devel-
opment cycles of hardware, software solutions have become
the preferred choice for many medium-sized cloud providers.
Although the control/data plane of existing software solutions
is based on SDN, they also face several critical disadvan-
tages (see §II-A for details). First, the preprogrammed model
pre-installs numerous rules for VMs and is coupled with
the control plane. The conventional gateway model depends
on fixed gateways allocated for host zones and is coupled
with the location of compute nodes. Hence, they lack the
scalability or robustness to adapt to large-scale networks.
Second, the existing control loops are complex, which slows
the recovery from network abnormal events, including device
failure/overload and VM migration.

To overcome the above challenges, we propose a scalable
and robust east-west forwarding framework for hyperscale
clouds, called Zeta. Zeta abstracts the traffic forwarding capa-
bility as a gateway cluster layer, decoupled from the location
and logic of other modules. Specifically, Zeta mainly proposes
the following innovative designs. (1) Zeta utilizes gateway
clusters to improve the fault tolerance of a single gateway
and leverages eXpress Data Path (XDP) [25] to accelerate
gateway forwarding, thereby enhancing the network scalability
and robustness. (2) Zeta adopts the flow table and group
table [26] to realize the intra-cluster gateway load balancing.
(3) Zeta proposes Multi IPs Migration to achieve gateway fast
recovery, which implements failover by migrating the vIPs of
the failed gateways. This scheme avoids updating the on-host
default rules pointing to the gateways, making failure recovery
transparent to hosts/tenants.

The main contributions of this paper are as follows:
• We analyze the pros and cons of existing typical east-west

forwarding models for hyperscale clouds and present the
design principles of our framework.

• We design a prototype framework, called Zeta,
to achieve scalable and robust east-west forwarding
for hyperscale clouds. Zeta is publicly available at
https://github.com/futurewei-cloud/zeta/.

• We evaluate the robustness and scalability of Zeta with
comprehensive experiments. Zeta can reduce the 99%
RTT by 5.1× in burst video traffic, and reduce the
gateway pure recovery delay by 10.8× compared with
the state-of-the-art solutions.

II. BACKGROUND AND MOTIVATION

We will analyze the limitations of three typical east-west
forwarding models for hyperscale clouds and motivate our
work in this section.

A. Limitations of Prior Works

As an open source cloud computing architecture, OpenStack
helps quickly deploy small-scale clouds [29]. As shown in
Fig. 1(a), OpenStack Neutron provides the networking capa-
bility for the clouds. Specifically, Neutron provides layer-2
networking communication by learning MAC address [27].
When two VMs in the same layer-2 domain communicate
for the first time, the source VM will broadcast ARP packets
to obtain the MAC address of the destination VM. However,
when encountering burst traffic in large-scale networks, it may
cause unnecessary layer-2 broadcast flooding, leading to poor
robustness and scalability [30]. For layer-3 networking, all the
traffic will be routed by specific network node(s) in the initial
OpenStack releases. It may suffer the risk of network node(s)
failure and high forwarding delay in large-scale networks.
To this end, OpenStack has released the Distributed Virtual
Router (DVR) since Juno version [28], which can significantly
mitigate the robustness and latency issues. However, DVR suf-
fers the oversize routing tables and frequent synchronization
problems, which also decrease the network scalability [31].
In general, OpenStack gradually improves forwarding perfor-
mance through evolutions. But due to the lack of targeted
designs for hyperscale clouds, it still faces robustness and
scalability issues.

To reduce the forwarding latency between VMs, the pre-
programmed model was adopted by many platforms (e.g.,
VMware NSX [3], [24]), which is similar to the proactive
model in SDN. As shown in Fig. 1(b), the control plane
pre-installs all potential rules when launching VMs, as it
cannot exactly predict which pairs of VMs will communicate.
The traffic between VMs will be forwarded directly with low
delays. However, the preprogrammed model brings some non-
negligible system overhead. First, it will pre-install a quadratic
number of rules on hosts, which limits the network scalability.
Specifically, in a cloud with h hosts and n VMs, it requires
a total of n2 rules to be pre-installed in the worst case, and
launching a new VM requires 2n rules to be pre-installed. A
massive number of pre-installed rules will slow down the rules
lookup and traffic forwarding, thus limiting the network scale.
Second, numerous preprogrammed rules seriously delay the
VMs deployment/migration. The control plane needs to pre-
install/update all potential rules on hosts, which will cause
a significant programming delay in communication establish-
ment/recovery. For example, the preprogrammed model takes
74 seconds to install 487M rules for a large network with 10k
hosts and 40k VMs [3], [4]. Above system overhead leads to
poor scalability of the preprogrammed model, especially in
large-scale cloud networks.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SCALABLE AND ROBUST EAST-WEST FORWARDING FRAMEWORK FOR HYPERSCALE CLOUDS 3065

TABLE I
COMPARISON OF THE ADVANTAGES AND DISADVANTAGES OF EXISTING MODELS

To overcome the disadvantages of the former two mod-
els, the gateway model on-demand installs rules, and has
been widely adopted by cloud providers (e.g., Google Cloud
Hoverboard [4]), which is similar to the reactive model in
SDN. As shown in Fig. 1(c), the gateway model organizes all
servers into host zones. Host zone is a collection of colocated
machines with uniform network connectivity, each of which
is equipped with a primary gateway and several backups. This
model only pre-installs default rules pointing to the gateway
on the host’s vSwitch. When a new flow arrives, the vSwitch
sends the header packets to the gateway according to the
default rules. Then, the gateway forwards these packets and
offloads direct path rules for elephant flows [4], so that the
subsequent packets of those elephant flows will be forwarded
to the destination directly.

The gateway model improves the network scalability
through on-demand rules offloading. However, it usually
allocates a primary gateway to each host zone and may
encounter the robustness issues. 1) Gateway failure. Although
the primary-backup gateway model synchronizes the status in
real time to provide disaster tolerance, it still takes a long time
to migrate the traffic from the primary gateway to the backup.
Specifically, when the primary gateway fails, the default Open
vSwitch (OVS) [32] entries of all hosts in the affected host
zone need to be updated to point to the backup gateway.
In addition, the gateway model will install a default OVS entry
for each VPC on the host due to VPC isolation. Considering
that there are usually hundreds of hosts in a host zone, and
each host may have dozens of VPCs, modifying the default
OVS entries of all hosts will cause a significant updating delay.
2) Burst traffic. The gateway model usually assigns only one
primary gateway to each host zone, so load balancing cannot
be directly applied. When a host zone encounters burst traffic,
the corresponding primary gateway will be easily overloaded
(especially when the control plane cannot detect and offload
elephant flows immediately).

B. Our Intuitions
As summarized in Table I, the gateway model combines

the advantages of both Neutron and Preprogrammed model
in terms of scalability and latency. However, the existing
gateway model usually assigns fixed gateway(s) to each host
zone. Its gateways incur a high risk of overload/failure under
abnormal events, including burst traffic and gateway failures.
A natural solution is to deploy multiple primary gateways in
a host zone to alleviate the impact of burst traffic or abnormal
events. However, the gateways need to be provisioned for peak
bandwidth usage, making it difficult to efficiently schedule
gateway resources [4].

Another intuitive solution is to organize all gateways into
a large virtual cluster to improve disaster tolerance. The
new arrival flows will be forwarded to gateways through

Equal-Cost Multi-Path (ECMP) [33]. However, once VMs
launching/migration occurs, the control plane should notify
all gateways to update the forwarding rules, which brings
high synchronization overhead on both the gateways and
the control plane [34]. For example, assuming that a large
datacenter contains 500 gateways and launches 3k containers
per second [10], [11]. The controller needs to push 1.5M rules
in one second, which poses a severe risk of control plane
overload and is not feasible for hyperscale clouds.

In order to integrate the pros of the existing gateway
model, but mitigate the cons discussed above, Zeta focuses on
improving robustness through two design principles. First, all
gateways are divided into several clusters, which effectively
improves fault tolerance while reducing the synchronization
overhead, as the controller only needs to push latest forwarding
rules to the gateways of one cluster every time. Second,
we abstract the forwarding function of gateways into the
gateway cluster layer. Each VPC allocates a gateway cluster,
which decouples the location of gateways and hosts, as the
most widely used leaf-spine topology [35] in data centers
makes the forwarding delay of gateways predictable and not
affected by location. Specifically, the direct communication
traffic between two instances needs to pass through at most
3 switches in a two-tier leaf-spine topology. Traffic forwarded
by one gateway needs to pass through at most 6 switches.

On the one hand, Zeta achieves gateway cluster load
balancing to effectively deal with burst traffic. Specifically,
Zeta uses OVS flow tables and group tables to achieve
intra-cluster load balancing, and applies VPC-cluster mapping
algorithm for inter-cluster load balancing. On the other hand,
the independence of Zeta gateway cluster brings flexibility to
failure recovery. Zeta adopts the Multi IPs scheme, which
is transparent to hosts/tenants to achieve fast recovery from
gateway failure/overload/expansion. In addition, we choose
XDP as the data plane of Zeta, because of its advantage of
obtaining resources on demand and integration with Linux
kernel. Based on the above ideas, we design a scalable and
robust east-west forwarding framework for hyperscale clouds
to support high-performance traffic forwarding.

III. SYSTEM DESIGN

A. Design Goals
Zeta is an east-west forwarding framework with gateway

clusters for hyperscale clouds. Our design goals are as follows:
• Robustness: High reliability is the core requirement

of east-west forwarding, especially for cloud providers.
In particular, Zeta focuses on effectively dealing
with burst traffic and abnormal events (e.g., gateway
failure/overload/expansion), to avoid network conges-
tion/interruption degrading the tenants’ experience.

• Low Latency: Since east-west traffic is very sensitive
to latency, Zeta aims to reduce the traffic forwarding

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

3066 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 2. Zeta Framework Overview. Gateway Cluster provides
high-performance traffic forwarding and on-demand rules offloading for tenant
instances. On-host Forwarding transmits traffic according to default/direct
rules and achieves the intra-cluster gateway load balancing through group
tables. Framework Management manages the whole network and further
improves the forwarding robustness.

latency through the high-performance in-kernel fast-path.
In addition, the lightweight control loop helps reduce the
programming delay of VMs launching/migration.

• Scalability: With the rapid growth of cloud scale, Zeta
should better support large-scale virtual networks up to
100k instances.

• Compatibility: Zeta is open source and can also serve
as a common hosting platform to integrate customization
network functions into the overall virtual networking.

B. System Overview

As shown in Fig. 2, to realize the above design goals,
we propose an efficient east-west forwarding framework,
called Zeta, which consists of three core modules: Gateway
Cluster, On-host Forwarding and Framework Management.

Gateway Cluster Layer establishes a forwarding network
based on VXLAN tunnel [36]. It leverages XDP to pro-
vide high-performance traffic forwarding and on-demand rules
offloading for tenant instances (§IV-B). The application of
gateway cluster ensures better scalability and robustness. Gate-
ways detect the elephant flows and send OAM (Operations,
Administration and Maintenance) packets to the source hosts,
which contain direct path rules (§IV-C). We further design
the timeout mechanism of eBPF map for flow statistics (§IV-
D). In addition, Zeta adopts Multi IPs Migration to achieve
fast recovery from gateway failure/overload/expansion, which
makes failure recovery transparent to hosts/tenants (§IV-E).

On-host Forwarding Layer transmits traffic according to
the rules on OVS. Before deploying a new VPC, a default
rule will be pre-installed on the host, which consists of a flow
entry and a group entry to achieve the intra-cluster gateway
load balancing (§V-A). When two VMs communicate for the
first time, the header packets will be sent to a specific gateway
according to the default rule. Each host deploys a Zeta Agent,
which is responsible for parsing OAM packets and installing
the direct path rules on the on-host OVS. In addition, the
lightweight control loop based on Zeta Agent can make a quick
response to network adjustments, such as passive instance
migration (§V-B).

Framework Management Layer manages the whole net-
work and further enhances the robustness of gateway clusters.

Fig. 3. Illustration of Gateway Cluster Design. The left plot is the overview of
gateway cluster and the right plot is the implementation details of XDP-based
gateway.

When Zeta is initialized, the management layer will determine
the VPC-cluster mapping for inter-cluster load balancing (§VI-
A). To deal with the abnormal events and traffic dynamics, the
Multi IPs Scheduler will dynamically adjust the configurations
(e.g., multi IPs allocation and cluster partition), thereby avoid-
ing overload of partial clusters for better robustness (§VI-B).

IV. GATEWAY CLUSTER DESIGN

A. Gateway Cluster Overview
Zeta Gateway Cluster establishes a VXLAN-based for-

warding network. Specifically, it provides high-performance
traffic forwarding and on-demand rules offloading for tenant
instances with scalability and robustness guarantee. As shown
in the left plot of Fig. 3, Gateway Cluster Layer consists of a
cluster controller and several gateway clusters.

Cluster Controller contains management and scheduling
logic for gateway clusters. First, it interacts with the Frame-
work Management Layer through its Northbound RESTful
API. Second, it manages the gateway clusters and maintains
the gateways load balancing through its Southbound API based
on gRPC [37]. Cluster Controller is hosted on a Kubernetes
cluster. We directly adopt Kubernetes’s own health check and
instance automatic recovery strategy to ensure the reliability
of the control plane.

Gateway Clusters constitute the data plane of the for-
warding network. We divide all gateways into several clus-
ters to achieve the robust gateway forwarding. In practice,
each cluster consists of several isomorphic gateways, which
store the same forwarding rules to collectively provide traffic
forwarding and rules offloading services for tenant instances.
Each gateway contains the Forwarding Module (FWD) and
the Distributed Flow Table Module (DFT). Specifically, FWD
forwards the packets to the destination hosts and offloads direct
forwarding rules to the source hosts for those elephant flows.
DFT is a lightweight key-value store, which maintains a con-
sistent forwarding table on each gateway of a cluster. When the
forwarding table changes (e.g., instances launching/migration),
the cluster controller will push the latest rules to each gateway
within the corresponding cluster. In addition, there is no state
synchronization among gateways (in §IV-C).

B. XDP-Based Traffic Forwarding
The forwarding module of a Zeta gateway is imple-

mented based on XDP [25] to improve the forwarding per-
formance and reduce the transmission latency. XDP is a
high-performance in-kernel fast data path, which mounts
programs on the NIC driver and realizes pre-stack packet

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SCALABLE AND ROBUST EAST-WEST FORWARDING FRAMEWORK FOR HYPERSCALE CLOUDS 3067

processing [25], [38]. On arriving at the gateway, the packets
will be processed and forwarded before the kernel network
stack, which avoids kernel stack overhead and reduces for-
warding delay. In addition, XDP adopts interrupt mode and
obtains CPU resources on demand according to the traffic
bandwidth [25]. Though XDP is not the first mover in this
area, we choose XDP as the data plane of Zeta, because
of its on-demand resource acquisition and integration with
Linux kernel. As illustrated in the right plot of Fig. 3,
we converge the forwarding, computing and storage functions
together, which eliminates the overhead of network stack
processing [39], [40].

Forwarding Module works at the NIC driver and can
directly operate on raw Ethernet frames. The workflows of
XDP-based forwarding program are as follows: (i) Receiving
header packets of the source instance from the NIC RX
buffer. (ii) Obtaining the forwarding rule of the target instance
by querying the storage module, that is, determining the
destination host of the traffic. (iii) Parsing the protocol field
of VXLAN inner packets. ARP messages will be directly
responded to the source instance, while other types of packets
will be forwarded to the destination. (iv) Sending OAM (Oper-
ations, Administration and Maintenance) packets containing
direct rules to the source hosts for the elephant flows.

Storage Module consists of several eBPF maps [41], [42].
These maps are key-value stores [43] that serve as the data
channel between DFT and FWD. The forwarding module will
also cache the real-time information of flows in eBPF maps.
For example, FWD will count the OAM packets generated for
each flow to avoid repeated offloading.

C. Gateway Flow Detection
In order to further reduce the rules stored on the hosts,

so as to save memory and reduce the forwarding delay caused
by rules lookup. Zeta adopts XDP’s high-performance packet
processing features to detect elephant and mice flows on the
gateway, which can improve the efficiency of the detection
program and the system’s robustness. When encountering
burst traffic generated by a simultaneous batch of workloads
(e.g., MapReduce [44]), the on-host flow detection program
of existing gateway model may be overloaded, as its host
agent is usually equipped with limited resources, e.g., 1 CPU
core and 1.5GB memory [4]. In contrast, the additional over-
head of detecting elephant flows is almost negligible for the
XDP-based gateways of Zeta while forwarding traffic.

When traffic arrives at the XDP forwarding module, it will
accumulate the total size of each flow in a certain period and
store the records in an eBPF map. If the cumulative size of
a flow exceeds the threshold (e.g., 20kbps [4]) before the
next period, it will be identified as an elephant flow and
offloaded to the source hosts. Each flow is only sent to a
specific gateway according to the 5-tuple hash (in §V-A),
which avoids synchronization of flow size statistics among
gateways. In addition, Zeta will monitor the gateway load.
When a gateway’s CPU or memory utilization reaches the
threshold (e.g., 80%), the gateway will pause the elephant
flows detection and offload direct rules for all flows.

D. Timeout Mechanism Design of eBPF Map
We use the eBPF map to store the periodic statistics of

flows for OAM counter and flow detection. Because the

eBPF map does not provide the timeout mechanism, that
is, an entry cannot automatically reinitialize after a period,
we implement this mechanism by ourself. An intuitive solution
for the timeout mechanism is to maintain an extra map for each
map to record the expiration time of entries. However, this
approach incurs several additional map read/writes, leading
to throughput degradation as the number of entries increases,
which has been verified by the experiments in §VIII-B. We fur-
ther optimize the timeout mechanism of eBPF map with one
read/write so reduce the impact of the number of entries on
the forwarding performance.

Specifically, we maintain a flow map to store various
periodic flow statistics and corresponding initialization times-
tamps. For each arriving packet, the forwarding program will
only read and write the flow map once according to the
5-tuple of this flow. For flow detection, the timeout mechanism
of the flow map entry is as follows: (i) If the flow entry is not
queried, the program will initialize an entry for this flow, and
record the current time stamp and packet size of this flow in the
entry. (ii) If the flow entry is queried, the program will update
the entry for flow statistics. Specifically, if the difference
between the current time and the time stamp recorded in the
entry exceeds the threshold, the program will update the time
period, and the entry will timeout and initialize. Otherwise,
the flow entry is not expired, the program will execute the
flow statistics and update the entry.

E. Dealing With Failures Through Multi IPs
The number of gateways in a cluster will change dynami-

cally due to gateway failures and scaling requirements, and the
hash modulo of the default rule will change accordingly (i.e.,
group entry buckets in §V-A). Therefore, we have to modify all
the installed default rules associated with the updated cluster.
To this end, massive affected hosts need to be informed,
which leads to heavy notification overhead and unacceptable
delay [45]. To address this issue, we design the Multi IPs
Migration. Briefly, each gateway node is logically assigned
multiple virtual IPs (vIPs), and the vIPs can be reallocated
among nodes. Tenant traffic is bound to vIPs and decoupled
from gateways.

The feature of XDP working in the layer-2 networking
inspires a solution of gateway failure recovery. We propose the
Multi IPs scheme to achieve fast failure recovery. Specifically,
the cluster controller maintains a Multi IPs Mapping Table.
When a gateway cluster is initialized, each gateway node in
the cluster will be allocated several logical virtual IP-MAC
pairs, and send RARP packets [46] to add MAC table entries
on the connected Top-of-Rack (ToR) switch(es). It should be
noted that these vIPs and vMACs are not actually configured
in the gateways’ NIC, as XDP program can directly operate
on the raw Ethernet frames. When a gateway fails, the cluster
controller will reassign the logical vIP-vMAC pairs of the
failed gateway to other healthy gateways in the cluster. Since
the forwarding rules maintained by each gateway in a cluster
are consistent, there is no synchronization overhead/delay
among gateways during failure recovery. Next, the healthy
gateways that have obtained migrated vIP-vMAC pairs will
utilize RARP to inform the connected switch(es) to update
MAC address table. Then, the packets from instances can be
correctly forwarded to healthy gateways.

Fig. 4 illustrates an example of fast recovery through Multi
IPs Migration. Initially, Gateway Cluster 1 contains three

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

3068 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 4. Dealing with Gateway Failures through Multi IPs. When Node2 fails,
the cluster controller first updates the mapping table to reassign the vIP-vMAC
pairs to healthy gateways (i.e. Node 1&3). Then Node 1&3 send RARP
packets to update the MAC entries on the connected switch. The recovery
scheme avoids modifying the default OVS rules on hosts.

gateway nodes, each of which is assigned with two vIP-vMAC
pairs, as shown in the Multi IPs Mapping Table. When Node2
fails, the cluster controller will update the mapping table,
ip3-mac3 and ip4-mac4 originally assigned to the Node2 are
reassigned to Node1 and Node3 respectively. Next, Node1
and Node3 utilize the RARP protocol to update the MAC
address table of the connected ToR switch, so that the packets
toward the failed Node2 will be immediately diverted to the
healthy nodes. As a result, the failure recovery is transparent
to hosts/tenants without modifying any default OVS entry
or on-host ARP cache that involves the failed gateway(s),
which significantly reduces the recovery delay and enhances
the system robustness. According to the experiments in §VIII-
C.2, Zeta reduces the gateway pure recovery delay from 62ms
to 5.5ms.

Discussion. Of course, Multi IPs Migration can also be
applied to the existing gateway model. That is, when the
primary gateway fails, its IP will be migrated to the backup
gateway. In this case, the existing gateway model is a special
case of Zeta gateway cluster, that is, each cluster has only one
active gateway. However, Zeta has additional advantages in
adopting Multi IPs: (1) Intra-cluster load adjustment and (2)
Rapid cluster scaling (covered in §VI-B).

V. ON-HOST FORWARDING DESIGN

A. Load Balancing Through Group Tables

This section elaborates on the designs of default entries to
achieve intra-cluster gateway load balancing. In order to real-
ize the decoupling of gateway cluster and location (i.e., host
or host zone), we construct default rules in VPC granularity.
Thus, when launching a new VPC on a compute node, the
default rule of this VPC will be pre-installed by Zeta Agent
on the on-host OVS.

To achieve the gateway load balancing within a cluster,
we utilize the flow table and group table of on-host OVS to
orchestrate the gateway clusters. In brief, each entry of the
group table points to a cluster, and the buckets in each group
entry specify the gateway nodes in this cluster. Specifically,
when the header packet of a flow reaches OVS, it first matches
the flow entry and jumps to a group entry according to the
VPC identifier (VPC_id) so that the target cluster for this
flow is determined. The VPC-cluster mapping algorithm will

Fig. 5. Illustration of Interaction between Flow Table and Group Table.
When VM1 belonging to VPC1 communicates with VM3 for the first time,
Host1 lookups the OVS1’s default tables, and the default gateway IP of VM1’s
flow is ip3. Then, the source host uses the ARP protocol to obtain that the
target gateway corresponding to ip3 is Node2. Finally, Host1 sends the header
packets of VM1 to Node2.

be elaborated in §VI-A. Then, the packet will be hashed to
a bucket in the group entry according to the 5-tuple, which
determines the destination vIP for this flow. Finally, the source
host adopts the ARP protocol to obtain the target gateway
corresponding to the destination vIP. As the group table selects
the target gateway based on the 5-tuple hash, load balancing
within a gateway cluster can be guaranteed.

We give an example in Fig. 5 to illustrate the intra-cluster
gateway load balancing with the flow table and group table.
Assuming that VM1 belonging to VPC1 communicates with
VM3 for the first time. When the header packet arrives at
the OVS of Host1, the OVS first matches the flow entry
with VXLAN VNI=1 and jumps to the group entry with
Group_id=1. Each bucket in a group entry corresponds
to the IP address of a gateway node in the cluster, and the
packet will be hashed to a bucket according to its 5-tuple.
In our example, the packet is hashed to bucket3, that is, the
destination vIP of the packet is ip3. Then, Host1 sends an ARP
request to obtain the vMAC of ip3, and Node2 in Cluster1
responses the ARP, that is, the packets will be forwarded to
the gateway Node2 by default. Finally, Host1 sends the header
packets of VM1 to Node2, and the gateway will forward these
packets and offload a direct rule to the source Host1.

B. Lightweight Control Agent

The lightweight control loop based on Zeta Agent can
effectively reduce the recovery latency of the passive instance
migration, such as Kubernetes Pod Eviction [47]. Assuming
that compute nodes deploy a Kubernetes cluster, when a
host is out of resources, the Kubernetes scheduler [48] will
migrate the relevant pod(s) to other host(s). Conventionally,
Kubernetes will not inform gateways or on-host agent of
pod migration actively. The agent of existing gateway model
needs to poll Kubernetes database (e.g., Etcd [49]) to obtain
the latest pod location. Therefore, the hosts cannot update
the offloaded rules immediately. The traffic is still forwarded
to the former destination hosts, which results in a network
interruption between the affected pods.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SCALABLE AND ROBUST EAST-WEST FORWARDING FRAMEWORK FOR HYPERSCALE CLOUDS 3069

Fig. 6. Lightweight Control Agent on compute nodes. When Pod2 is
migrated, the flows sent to Pod2 will be redirected to gateway. The gateway
forwards the flows and queries the database, then updates the direct path on
the source host.

Three steps are required to recover the communication
of migrated pods: (i) Obtaining the latest forwarding rules.
(ii) Redirecting the packets toward the migrated pods to the
correct destination. (iii) Updating the direct rules on the
source hosts. We hope that Zeta reduces the recovery delay of
passive instance migration and Zeta Agent remains lightweight
to occupy fewer host resources. Thus, instead of directly
implement above three steps on agent, Zeta Agent redirects
the traffic destined for the migrated pods to gateways. The
gateways query the latest rules and forward the traffic to the
correct destination.

As illustrated in Fig. 6, when Pod2 is migrated, the Zeta
Agent on Node2 will install an entry on OVS2 to redirect all
packets toward the Pod2 to the gateway. FWD on Zeta gateway
recognizes the redirected packets and reports their destinations
to DFT. DFT queries the latest location information of Pod2
from Kubernetes database and updates the rules in FWD.
Then, FWD will forward the redirected packets to the correct
destination Node3, and send OAM packets to the source
Node1. Finally, the Zeta Agent on Node1 will update the direct
forwarding rule to Pod2.

VI. FRAMEWORK MANAGEMENT DESIGN

A. Gateway Cluster Mapping

When Zeta initializes, the management layer will determine
the VPC-cluster mapping for inter-cluster load balancing.

1) System Model: In the Zeta framework, we use C =
{c1, c2, . . . , cn} to denote the gateway clusters, where n = |C|
is the number of clusters. For each gateway cluster c, its
forwarding capacity is denoted as B(c). We denote V =
{v1, v2, . . . , v|V |} as the VPC set. Let T = {t1, t2, . . . , td}
denote the tenants set, where d = |T | is the number of
tenants in the cloud. Each tenant t ∈ T consists of a VPC
set Vt = {vt

1, v
t
2, . . . , v

t
|Vt|}. Obviously, V = V1 ∪ V2 . . .∪ Vd.

Moreover, the traffic demand of each VPC is denoted as f(v).
2) Problem Formalization: We define the gateway clusters

mapping (GCM) problem in the Zeta framework. To enhance
the system robustness and improve the QoS. We need to
consider the following two constraints. (1) VPC Constraint.
A VPC will be mapped to one and only one gateway cluster,
as all the vIPs of a group entry belong to the same cluster
(§V-A). (2) Tenant Constraint. We limit the number of

gateway clusters that each tenant can be mapped to. For
security reasons, we do not expect that burst/malicious traffic
from a single tenant will affect all gateway clusters.

Moreover, we use binary xc
v ∈ {0, 1} to denote whether a

VPC v ∈ V is mapped to a gateway cluster c ∈ C or not.
Let binary yc

t ∈ {0, 1} represent whether the gateway cluster
c ∈ C is assigned the VPCs belonging to tenant t ∈ T or not.
The objective of GCM is to achieve the load-balancing
among all gateway clusters. We formulate GCM
as follows:

min λ

S.t.

∑
c∈C

xc
v = 1, ∀v ∈ V∑

v∈V

xc
v · f(v) ≤ λB(c), ∀c ∈ C

xc
v ≤ yc

t , ∀v ∈ Vt, c ∈ C, t ∈ T∑
c∈C

yc
t ≤ k, ∀t ∈ T

xc
v ∈ {0, 1}, ∀v ∈ V, c ∈ C

yc
t ∈ {0, 1}, ∀t ∈ T, c ∈ C

(1)

The first set of equations means that all traffic of a VPC
will be forwarded to one gateway cluster by default. The
second set of inequalities describes the traffic load on each
gateway cluster, where λ ∈ [0, 1] represents the load balancing
factor. The third set of inequalities indicates that the tenant t
is mapped to gateway cluster c only if VPC(s) of tenant t is
processed by cluster c. The fourth set of inequalities represents
the Tenant Constraint, that is, the VPCs of a tenant will be
mapped to at most k gateway clusters. Our objective is to
achieve the load balancing among all gateway clusters, i.e.,
minimizing the load balancing factor λ.

Theorem 1: The GCM problem is NP-hard.
Proof: We consider a simplified version of GCM problem

without the VPC constraint. Then the simplified GCM problem
becomes a Parallel Machine Scheduling (PMS) problem [50].
Since the PMS problem is NP-hard, the GCM problem is NP-
Hard too. □

3) Rounding-Based Mapping Algorithm: To solve the prob-
lem in Eq. (1), we propose a rounding-based gateway cluster
mapping (RGCM) algorithm for the GCM problem, described
in Alg.1, which includes two steps. The first step is to con-
struct linear programming as relaxation of GCM (LP-GCM).
Specifically, LP-GCM assumes that the traffic of each VPC
can be splittable and forwarded to multiple gateway clusters.
Since LP-GCM is a linear programming, we can obtain the
fractional solutions {x̃c

v} and {ỹc
t} by a convex programming

solver, such as Gurobi [51]. The optimal fractional result is
denoted as λ̃.

The second step is to derive an integer solution, denoted as
{x̂c

v}, {ŷc
t} randomized rounding [52]. (1) For each individual

tenant t ∈ T and each gateway cluster c ∈ C, ŷc
t is set to

1 with the probability of ỹc
t (lines 5-10). Here ŷc

t = 1 means
that the traffic of tenant t will be processed by gateway cluster
c. If the set of optional gateway clusters for the tenant t is
empty after one round of traversal, we will repeat the traversal

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

3070 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Algorithm 1 RGCM: Rounding-Based Mapping Algorithm
1: Step 1: Solving the Relaxed RGCM Problem
2: Construct a linear programming of the problem formalized

in Eq. (1)
3: Obtain the optimal fractional solutions {x̃c

v}, {ỹc
t}

4: Step 2: Gateway Cluster Selection for Each VPC
5: for Each tenant t ∈ T do
6: Define Ct = {c|ŷc

t = 1}
7: repeat
8: for Each cluster c ∈ C do
9: Set ŷc

t = 1 with the probability of ỹc
t

10: until |Ct| > 0
11: for Each VPC v ∈ V do
12: Define Ct = {c|ŷc

t = 1, v ∈ Vt}
13: Set Pr

c∈Ct

[x̂c
v = 1] = x̃c

v

ỹc
t

14: Assign an interval of length x̃c
v

ỹc
t

to each cluster c ∈ Ct

15: Generate a random number ξ between [0,
∑

c∈Ct

x̃c
v

ỹc
t
]

16: One cluster is assigned to VPC v according to the
interval where ξ is located

of the gateway clusters. (2) After variables {ŷc
t} have been

determined, we will assign a default gateway cluster to each
VPC v ∈ V (lines 11-16). RGCM decides the VPC-cluster
mapping by rounding variable {x̃c

v}. We first define the set of
clusters that are available to the VPC v belonging to tenant t,
as Ct, i.e., Ct = {c|ŷc

t = 1, v ∈ Vt}. The variable x̂c
v is set to

1 with the probability of x̃c
v

ỹc
t

, i.e., the probability that cluster

c ∈ Ct assigned to VPC v is x̃c
v

ỹc
t

. We then assign an interval

of length x̃c
v

ỹc
t

to each cluster c ∈ Ct, and generate a random

number ξ between [0,
∑

c∈Ct

x̃c
v

ỹc
t
]. Finally, one cluster is assigned

to VPC v according to the interval where ξ is located.
4) Performance Analysis: This section will give the approx-

imate ratio of tenant constraint and VPC constraint, and the
analysis of load balancing performance. We first introduce two
well-known probability theory lemmas:

Lemma 2 (Chernoff Bound): Given n independent vari-

ables: x1, x2, . . . , xn, where ∀xi ∈ [0, 1]. Let µ = E[
n∑

i=1

xi].

Then, Pr[
n∑

i=1

xi ≥ (1+ϵ)µ] ≤ e
−ϵ2µ
2+ϵ , where ϵ is an arbitrarily

positive value.
Lemma 3 (Union Bound): Given a countable set of n

events: A1, A2, . . . , An, each event Ai happens with possi-

bility Pr(Ai). Then, Pr(A1 ∪A2 ∪ . . . ∪An) ≤
n∑

i=1

Pr(Ai).

Analysis of the Tenant Constraint: The first step of
RGCM will obtain the fractional solution {ỹc

t} of the relaxed
RGCM problem. With the randomized rounding, ŷc

t is set as
1 with the probability of ỹc

t . Thus, the expectation that gateway
cluster c is assigned as the alternative default gateways of the
tenant t is given by:

E[ŷc
t] = Pr[ŷc

t = 1] = ỹc
t (2)

Thus, the expected number of gateway clusters allocated to
the tenant t is given by:

E[
∑
c∈C

ŷc
t] =

∑
c∈C

E[ŷc
t] =

∑
c∈C

ỹc
t ≤ k (3)

Theorem 4: With the rounding-based mapping algorithm,
the number of gateway clusters that allocated to the tenant t
will not exceed k by a factor of 3 ln d

k +3 with a high probability
of 1− 1

d2 , where d denotes the number of tenants.
Proof: For each tenant t, ŷc

t ∈ {0, 1} are independent
variables with the expectation value E[

∑
c∈C ŷc

t] ≤ k. Accord-
ing to Lemma 2, we have:

Pr[
∑
c∈C

ŷc
t ≥ (1 + ϵ)k] ≤ e

−ϵ2k
2+ϵ (4)

We assume that

e
−ϵ2k
2+ϵ ≤ 1

d3
, d = |T | (5)

which means that the probability bound in Eq. 5 goes
quickly to zero as the number of tenants d increases. To hold
this, ϵ should satisfy:

ϵ ≥ 3 ln d +
√

9 ln2 d + 24k ln d

2k
(6)

If we pick ϵ = 3 ln d
k +2, the above inequality holds. In other

words, we have:

Pr[
∑
c∈C

ŷc
t ≥ (1 + ϵ)k] ≤ 1

d3
, ϵ =

3 ln d

k
+ 2 (7)

Finally, we guarantee the upper bound on the probability
that the number of gateway clusters that allocated to a tenant
is violated by Lemma 3:

Pr[
∨
t∈T

∑
c∈C

ŷc
t ≥ (1 + ϵ)k]

≤
∑
t∈T

Pr[
∑
c∈C

ŷc
t ≥ (1 + ϵ)k]

≤ d · 1
d3

, ϵ =
3 ln d

k
+ 2 (8)

Therefore, the number of gateway clusters that allocated to
tenant t will not exceed k by a factor of 1+ϵ = 3 ln d

k +3 with
a high probability of 1− 1

d2 . □
Analysis of the VPC Constraint: The probability that

gateway cluster b is allocated to the VPC v is given by:

Pr[x̂c
v = 1] = Pr[x̂c

v = 1|yc
t = 1]Pr[yc

t = 1]
+ Pr[x̂c

v = 1|yc
t = 0]Pr[yc

t = 0]

=
x̃c

v

ỹc
t

· ỹc
t = x̃c

v (9)

The expected number of gateway clusters allocated to the
VPC v is given by:

E[
∑
c∈C

x̂c
v] =

∑
c∈C

E[x̂c
v] =

∑
c∈C

Pr[x̂c
v = 1]

=
∑
c∈Ct

Pr[x̂c
v = 1] +

∑
c/∈Ct

Pr[x̂c
v = 1]

= 1 + 0 = 1 (10)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SCALABLE AND ROBUST EAST-WEST FORWARDING FRAMEWORK FOR HYPERSCALE CLOUDS 3071

where the last equation holds according to the second step of
RGCM, that selects a default cluster from Ct for VPC v ∈ V
with the probability of x̃c

v

ỹc
t

. Therefore, the RGCM algorithm
will allocate only one gateway cluster to each VPC with the
VPC constraint guarantee.

Load Balancing Performance Analysis: We compute the
expected forwarding load of gateway clusters. We bound the
probability with which the forwarding load of gateway clusters
will be violated. First, we define a variable lcv as the forwarding
load of the cluster c ∈ C allocated to VPC v ∈ V :

lcv =

 f(v), with the probability of
x̃c

v

ỹc
t

0, otherwise
(11)

The expected forwarding load of the cluster c is:

E[
∑
v∈V

l̂cv] =
∑
v∈V

E[l̂cv] =
∑
v∈V

f(v) · x̃c
v ≤ λ̃ ·B(c) (12)

To obtain the relationship between load variables and the
optimal result, we define the following variable:

β =
λ̃ ·B(c)

maxv∈V f(v)
(13)

According to Theorem 4 and Eq. 12, we can prove the
following theorem for load balancing factor.

Theorem 5: The rounding-based mapping algorithm
achieves the load balancing factor at most 3 ln d

β + 3 times
worse than the optimal result with a high probability of
1− 1

d2 , where d denotes the number of tenants.
Since the proof of the above theorem is similar to Theo-

rem 4, we will omit the detailed proof here.
According to the above analysis, we can conclude that the

approximate factors in Theorems 4-5 are bi-criteria approx-
imations of the Tenant Constraint and the load balancing
factor. In many practical cases, these factors are constant. For
example, assuming that a large datacenter contains 500 gate-
ways and 10,000 tenant, and the forwarding capacity of
each gateway is 40Gbps. We divide the 500 gateways into
50 clusters, and the forwarding capacity of each cluster is
400Gbps, i.e., B(c) = 400. According to the practical flow
traces [53], the maximum traffic of a VPC may reach 10Gbps.
We then set the Tenant Constraint k as 20 and load balancing
factor λ̃ as 0.6. Under this case, we have β = 0.6×400

10 = 24,
and ln d = ln 10, 000 ≈ 9.2. The approximation factors for the
Tenant Constraint and the load balancing factor are 4.4 and
4.2, respectively.

B. Multi IPs Scheduler

The Multi IPs Scheduler executes the IPs migration scheme
proposed in §IV-E. It dynamically updates the IPs allocations
to eliminate the overload of gateway clusters caused by the
burst traffic and abnormal events. In practice, when a gateway
exceeds the load threshold (e.g., 80%), it will immediately
report such overload to the control plane. Then the Multi IPs
Scheduler will perform the following two steps:

Step 1: Intra-Cluster Load Adjustment. The scheduler
first sorts all gateways of a cluster in the descending order

Fig. 7. Best practice of zeta deployment.

of their load. Next, the scheduler attempts to migrate a
vIP-vMAC pair from the overloaded gateway to the gateway
with the lightest load, and re-sorts gateways’ load. Then,
the scheduler will repeat above IPs migration and gateway
sorting procedure until none of the gateways in the cluster is
overloaded. If we cannot eliminate the overloaded gateways
with step 1, the scheduler will go to step 2.

Step 2: Cluster Scaling. If a cluster cannot eliminate
overload through internal load adjustment, e.g., a legitimate
VPC has burst traffic. The scheduler will migrate gateways
from other clusters to this cluster or expand new gateways for
this cluster. The scheduler first sorts all the clusters by their
average load in the descending order and attempts to reassign a
gateway from the least loaded cluster to the overloaded cluster.
We can utilize Multi IPs Migration to achieve rapid gateway
migration among clusters. However, if the gateway migration
causes overload risk to the source cluster, the scheduler will
directly expand the overloaded cluster with a new gateway.

VII. IMPLEMENTATION

We implement Zeta based on Linux 5.4 kernel. The Cluster
Controller includes 3k lines of Python code, the XDP-based
gateway forwarding function includes 4.5k lines of C code,
and the Zeta Agent includes 2k lines of C++ code.

Zeta is usually deployed as two self-contained parts: (i) One
Kubernetes micro-service for Cluster Controller services;
(ii) One Gateway Cluster for Zeta data plane, which is based
on physical machines in production environment.

Fig. 7 illustrates the best practice of Zeta deployment, which
includes a control node, several gateway nodes and compute
nodes. The leftmost control node deploys the management
service of the cloud platform and Kubernetes cluster hosting
Zeta Controller. The middle ones are gateway nodes, each
of which deploys DFT and FWD modules. The eth1 inter-
faces of all nodes access the Device Management Network.
In addition, we use separate interfaces for the Zeta API
Network and Tenant Network, which prevents massive tenants’
traffic from blocking the control messages. The Zeta API
Network is responsible for sending the operation instructions
and reporting status information, including OAM packets, IPs
allocation/migration policies and gateways’ load status. The
Tenant Network transmits the east-west traffic through the
VXLAN tunnel [36] for tenant instances.

VIII. EVALUATION

We first conduct an ablation analysis to measure the perfor-
mance of Zeta. We then test the robustness of Zeta under burst

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

3072 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

traffic and abnormal events. Finally, we evaluate the scalability
of Zeta in public and private cloud scenarios.

A. Experimental Setting

Testbed Setups. We use 23 servers to build the testbed, all
running Ubuntu 18.04 with Linux kernel 5.4. Considering our
limited number of servers, we deploy KVM-based gateways
on several physical machines to simulate gateway clusters.
In addition, we launch a large number of container instances on
each compute node to evaluate scalability, because of limited
number of compute nodes. The scalability in this paper mainly
refers to the instance scale, instead of the host scale, as the
forwarding rules stored in the gateways and the tenant traffic
depend on the instance scale.

Specifically, 20 servers are used as hosts, each equipped
with dual 22-core Intel Xeon 6161 CPUs, 640GB memory
and an Intel XL710 40GbE NIC. The other 3 servers are used
to deploy gateway clusters, each equipped with dual 16-core
Intel Xeon E5-2697A CPUs, 256GB memory and an Intel
XL710 40GbE NIC. We deploy a total of 45 KVM-based
gateways on the 3 physical gateway machines. Each KVM-
based gateway is equipped with 4 vCPUs and 16GB memory.
For Zeta, we divide the 45 gateways into 10 clusters, and map
VPCs to gateway clusters with the RGCM algorithm to achieve
load balancing among clusters.

Moreover, according to the empirical data in [4], we set the
rules offloading threshold to 20kbps on the gateway.

Benchmarks. We compare the robustness and scalability of
Zeta with other three typical frameworks. The first framework
is the conventional gateway model [4], called GWZone, and
its gateway is modified based on the implementations of Zeta’s
gateway. The number of gateways in Zeta is the same as that
of main gateways in GWZone, but their gateway allocation
methods are different. We divide the on-host instances into
45 parts in sequence, each part is regarded as a host zone,
and each host zone is assigned a main gateway. Unlike
Zeta, GWZone detects elephant flows on compute nodes.
When GWzone faces gateway failure, it will update the
default entries on affected hosts and migrate traffic to the
backup gateways. We equip GWZone with 9 additional backup
KVM-based gateways. As the backup gateways only consume
∼0.1 vCPU and ∼2GB memery in standby, they will not
affect the performance of the primary gateways. The second
one is the OpenStack Neutron [27], which provides layer-2
networking communication by learning MAC address. The
third one is the Preprogrammed model, which is a simplified
implementation of VMWare NSX [3], [24] as it is not open
source. This model will pre-install all potential rules before
launching VMs.

B. Microbenchmark

We first evaluate the impact of flow detection and rules
offloading on forwarding performance with a physical/virtual
core under the fixed number of entries, as shown in Fig. 8.
Here a physical core refers to a hyper-thread on the physical
machine, and a virtual core refers to a vCPU in the KVM-
based gateway. That is, a physical core and a virtual core

Fig. 8. Packet rate under unoptimized timeout mechanism with multiple
additional map read/writes vs. no. of entries.

Fig. 9. Packet rate under optimized timeout mechanism with one additional
map read/write vs. no. of entries.

occupy the same resources. We want to measure the per-
formance differences of XDP between physical and virtual
machines, respectively. We use iPerf [54] to generate UDP
traffic, and the inner packet size is 64 bytes. In addition,
the number of entries stored in eBPF map ranges from 2k
to 100k. As shown in Fig. 8(a), a single physical core can
forward 1.86M packets per second under 2k entries. When the
rule offloading or flow detection is supplied, the forwarding
rate reduces by 8.1% to 1.71Mpps, as these two functions
introduce one more eBPF map read/write for flow statistics.
After adding both flow detection and offloading functions on
the gateway, the performance decreases slightly. For example,
the forwarding rate only reduces by 1.2% from 1.71Mpps to
1.69Mpps under 2k entries. This is because the map read/write
is the majority overhead for forwarding, while the detection
and offloading functions share one eBPF map with only one
map read/write.

We further evaluate the improvement of map timeout
optimization on forwarding performance under an increasing
number of entries, as shown in Figs. 8-9. We observe from
Fig. 8 that the timeout mechanism with multiple extra map
read/writes for flow statistics leads to throughput degradation
with the number of entries increasing. We observe from
Fig. 8(a) that the forwarding rate with rule offloading and
flow detection drops by 14% to 1.45Mpps when the number
of entries is 100k. That is because the unoptimized timeout
mechanism incurs multiple extra map read/writes, leading to
throughput degradation as the number of entries increases.
Fig. 9 shows that the optimized timeout mechanism with one
additional map read/write can effectively reduce the impact of
the number of entries on the forwarding performance. There is
no significant performance decline when the map entries scale
to 100k, as the read/write overhead of map timeout is nearly
O(1) after optimization.

In addition, Fig. 9(a) shows that the pure forwarding rate
of one virtual core is 0.86Mpps under 2k entries, which drops

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SCALABLE AND ROBUST EAST-WEST FORWARDING FRAMEWORK FOR HYPERSCALE CLOUDS 3073

Fig. 10. 99% Offloading latency vs. no. of flows.

Fig. 11. Packet rate of a CPU core vs. no. of entries.

54% compared with one physical core. That is because the
driver of Intel XL710 VF (i.e., iavf) does not support XDP
Native mode in VMs. In order to evaluate the performance
of Zeta gateway cluster with a limited number of physical
machines, we adopt XDP Generic mode in KVM-based gate-
ways in the following experiments [25], [42]. Considering
that the forwarding implement of a single gateway in the
comparison scheme (i.e., GWZone) is consistent with Zeta,
XDP General mode will not affect the superiority of Zeta in
robustness and low forwarding latency. In addition, with the
rapid development of XDP, more and more NIC drivers have
been supporting the XDP Native mode in VMs (e.g., Intel
82599 and Mellanox ConnectX-5 [55]).

We then measure the rules offloading latency with flow
detection on gateway and host, as shown in Fig. 10. The
gateway still performs traffic forwarding and rules offloading
with a physical/virtual core. We use iPerf to generate UDP
flows on a host, each of which is 10Mbps. Fig. 10(a) shows
that flow detection on gateway can reduce the 99th percentile
of offloading latency by 22% under 500 flows compared with
that on host, as the performance of on-host detection is worse
than XDP on gateways. In general, flow detection on gateway
can reduce the rules offloading latency (e.g., reduce 22% as
shown in Fig. 9(a)) and has little impact on the forwarding
performance (e.g., decrease 1.2% from 1.71Mpps to 1.69Mpps
as shown in Fig. 8(a)). Thus, Zeta detects elephant flow
on gateways for faster rules offloading with little detection
overhead.

Fig. 11 shows that the total throughput will scale linearly
with the increasing number of physical/virtual cores. Specifi-
cally, when the inner packet size is 512 bytes and the number
of entries is 2k, the throughput of a physical core is 5.4Gbps,
and 8 physical cores will hit the NIC’s bandwidth limit of the
physical machine at 40Gbps. The throughput of a virtual core
is 2.54Gbps, and 10 virtual cores will nearly reach 25Gbps
throughput. Moreover, with the optimized map timeout mech-
anism, the throughput does not drop when map entries scale
to 100k. From the above results, we can conclude that the

Fig. 12. Max. gateway CPU utilization vs. workload types.

Fig. 13. 99% RTT vs. workload types.

Fig. 14. 99% normalized FCT vs. workload types.

linear scaling throughput of CPU cores greatly enhances the
scalability of Zeta gateway clusters.

C. Robustness Evaluation

In this section, we evaluate the performance of Zeta under
various burst traffic workloads and different abnormal events.
According to the trace data from Google cluster-data [53],
we deploy 100 VPCs with 2,000 VMs on the 20 compute
nodes. Each VPC contains 10-90 VMs, and each VM is
equipped with 1 vCPU and 6GB memory.

1) Robustness Under Burst Traffic: We compare the robust-
ness of the Zeta gateway cluster with GWZone under burst
traffic of different applications. We choose three typical traffic
workloads according to the traffic characteristics in cloud
networks [56], [57], including MapReduce, video and audio.
Specifically, we deploy a MapReduce cluster in each VPC and
execute the word-counting application on each MapReduce
cluster simultaneously with input size of 10GB, which mainly
generates TCP elephant flows. We also deploy video and audio
applications in each VPC. The video traffic contains UDP
elephant flows with bandwidth ranging from 2.4Mbps (720P
video) to 100Mbps (8K video) [58], [59]. The audio traffic
consists of UDP mice flows whose transmission rate ranges
from 12.2kbps to 23.85kbps [60].

Figs. 12-15 illustrate the performance metrics of Zeta
gateways under different burst traffic scenarios. According to
Fig. 10, it takes about tens of milliseconds for gateways to
offload the elephant flows, which means that the elephant
flows of MapReduce and video applications still bring load
to gateways before offloading. Considering that Zeta assigns

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

3074 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 15. 99% packet loss rate vs. workload types.

Fig. 16. Max. gateway CPU utilization over time.

Fig. 17. CDF of gateway CPU utilization.

a gateway cluster to each VPC, while GWZone assigns a
primary gateway to each host zone. Thus, Zeta can achieve
better load balance to deal with various burst traffic. For
example, Fig. 12 records the maximum gateway load during
the running of the three applications. Zeta can reduce the
maximum gateway load by 18.5%, 33.9% and 25.2% com-
pared with GWZone in the three applications, respectively.
In addition, it is noteworthy that the acknowledgment and
retransmission mechanisms of MapReduce’s TCP flows bring
higher load to the gateways than UDP before offloading, which
leads to the highest gateway load compared with video and
audio streams.

Moreover, Fig. 14 shows the 99th percentile of normalized
FCT, which is normalized to the FCT without burst traffic.
The 99% normalized FCT achieved by Zeta is 21.3%, 14.8%
and 26.8% lower than that of GWZone under three scenarios,
respectively. Although the gateway load of audio traffic is low,
it mainly consists of mice flows, which will be forwarded by
gateways without offloading direct path rules. Thus, the cumu-
lative delay of the audio flows caused by gateway forwarding
will be the largest among the three applications, which results
in the maximum FCT of audio flows. Besides, we observe
from Fig. 15 that the 99th percentile of packet loss rate of
Zeta under the three scenarios reduces by 53.8%, 58.2% and
63.3% compared with GWZone. The above results prove that
Zeta can effectively conquer different burst traffic and avoid
gateways overhead.

Furthermore, we evaluate several performance metrics of
Zeta under burst video traffic compared with other frame-
works, as shown in Figs. 16-21. During an interval of
0.5s, we record the CPU utilization of gateways, number

Fig. 18. Gateway CPU utilization vs. no. of burst flows.

Fig. 19. No. of offloaded direct rules over time.

of offloaded rules, rule offloading latency and FCT. Specif-
ically, Fig. 16 shows the maximum gateway load of Zeta
and GWZone in 10k burst video flows. According to the
experimental settings, burst traffic are generated randomly
in 5-15s, so the average gateways load increases sharply at
the 5th second. Next, Zeta detects elephant flows faster on
the gateways, so it quickly achieves the balance between
offloading and newly coming elephant flows. However, the
mice flows continue to increase, so the load of Zeta between
7-15s increases slightly on the basis of stability. Meanwhile,
the on-host flow detection of GWZone suffers from high
latency, and the elephant flows can not be offloaded in time.
Thus, the loads of GWZone’s gateways increase sharply from
5s to 13s.

To further study how the workload of gateways distributes,
we show the gateways’ CPU utilization at the 12th second,
when Zeta and GWZone both suffer high gateway workload,
in Fig. 18. Zeta achieves lower average load with more
concentrated load distribution than GWZone, which means
better load balancing. Fig. 17 shows the load CDF of gateways
in 10k burst video flows. GWZone’s backup gateways are
lightly loaded, while 25% primary gateways are overloaded
(i.e., the CPU load exceeds 80%). The above results show the
superiority of Zeta gateway cluster in load balancing.

Fig. 19 shows the number of offloaded direct forwarding
rules in 10k burst video flows. Due to the latency of the
on-host flow detection program, the number of offloaded rules
for GWZone increases slowly. The number of Zeta offloading
rules is increasing rapidly. Preprogrammed is constant at a
high point as its preprogrammed model. The trend of Neutron
is similar to Zeta. Fig. 21 shows CDF of Normalized FCT in
10k burst video flows. The results are similar to Fig. 19. The
preprogrammed model performs the best, followed by Zeta
and Neutron, while GWZone is the worst.

2) Fast Recovery From Abnormal Events: We measure the
recovery latency of Zeta under abnormal events. Zeta adopts
Multi IPs Migration for fast recovery, while GWZone updates
the default OVS entries on hosts.

Zeta and GWZone both periodically send heartbeat packets
to the controller to report the health/load status. Specifically,
the gateway sends a heartbeat packet to the controller every

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SCALABLE AND ROBUST EAST-WEST FORWARDING FRAMEWORK FOR HYPERSCALE CLOUDS 3075

Fig. 20. 99% offload latency vs. no. of burst flows.

Fig. 21. CDF of normalized FCT.

Fig. 22. Recovery latency vs. abnormal events.

Fig. 23. CPU load of gateways in a cluster over time.

50ms. If the controller does not receive the new heartbeat
message from a gateway for more than 55ms, it will actively
ask the gateway for the status. If the controller still does not
receive the reply from this gateway within the timeout period
of 5ms, the gateway is judged to have failed, and the Multi
IPs Migration will be performed.

When the measurement starts, we first sequentially send
Ping probe packet to a gateway every 0.5ms, and then we
make an artificial abnormal event on that gateway. By counting
the number of lost packets during the failure recovery, we can
derive the recovery delay.

From the results in Fig. 22, we observe that Zeta can
effectively reduce the recovery latency of the three abnormal
events compared with GWZone. For example, the total failure
recovery delay of Zeta gateway is 38.5ms, which is 1.5× faster
than that of GWZone, because GWZone needs to inform each
host and update∼100 default entries on each OVS. In addition,
if we ignore the failure detection time, the pure recovery delay
of Zeta is 5.5 ms, which is 10.8× faster than that of GWZone.

Fig. 23 illustrates the load status of each gateway in a cluster
of Zeta during the overload event. Specifically, the burst flows
with default destination of Node1 arrive in 35ms, and the CPU
load of Node1 increases rapidly. When the gateway’s CPU

Fig. 24. Controller latency and overhead vs. no. of rules.

Fig. 25. Launching time vs. no. of containers.

Fig. 26. Gateway CPU utilization vs. no. of containers.

utilization reaches the 90% threshold, the Multi IPs Migration
is triggered in 120ms, and three vIPs on Node1 are reassigned
to the other three nodes with lighter load. Then, the load of
Node1 quickly decreases to a normal level within 19.5ms. It is
intuitive that Multi IPs can effectively conquer the overload
of a single gateway and rapidly adjust the load imbalance of
intra-cluster.

D. Scalability Evaluation

In this section, we evaluate the scalability of Zeta in both
public and private cloud scenarios. We first evaluate the latency
and overhead of the controller pushing up to 100k forwarding
rules. We then measure the latency of launching up to 100k
container instances. Finally, we evaluate the performance met-
rics of Zeta and GWZone under the large-scale cloud network.

The public cloud scenario contains a large number of
instances/VPCs. Based on the real trace from Google cluster-
data [53], we deploy 568 tenants and 1885 VPCs with up to
100k containers on the 20 compute nodes. Each VPC contains
2-364 containers. The private cloud scenarios have a small
number of VPCs/tenants, but a VPC contains a large number
of instances. We deploy 52 tenants and 90 VPCs with up to
10k containers on the 20 compute nodes, and each VPC has
a number of instances ranging from 2 to 2765.

According to the bandwidth distribution of flows in [4],
we let 16% of container pairs communicate, and the traffic
intensity of each flow ranges from 10kbps to 1Gbps.

1) Rules Push Latency and Overhead: When the for-
warding rules initialize (e.g., instances launching) or change

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

3076 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 27. 99% normalized FCT vs. no. of containers.

Fig. 28. Packet loss rate vs. no. of containers.

(e.g., instances migration), the cluster controller will push
the latest rules to each gateway within the corresponding
cluster (in §II-B and §IV-A). Therefore, there is no rule/state
synchronization among gateways. In addition, the controller
will aggregate multiple rules sent to a gateway into one mes-
sage, and push rules to multiple gateways in parallel through
multiple processes, which effectively reduces the latency and
overhead of rules push by the controller.

Fig. 24 shows the latency and CPU utilization of the
controller pushing 10k-100k forwarding rules in Zeta and
GWZone, respectively. Specifically, both Zeta and GWzone
have 45 gateways, of which Zeta’s gateways are divided into
10 gateway clusters. We observe from the experimental results
that the rules push latency and overhead increase with the num-
ber of rules. In addition, Zeta’s rules push latency and overhead
are lower than GWZone. For example, Zeta controller spends
3.3s pushing 100k rules to 10 gateway clusters, and the push
delay is 57.5% lower than that of GWZone. The reason is that
the forwarding rule of each instance in Zeta will only be stored
in the gateways of one cluster. However, the forwarding rules
of GWZone need to be stored in all gateways, because the
gateway of the host zone of the source instance requires the
forwarding rule of the destination instance, while the source
instance may be located in any host zone. Therefore, when
a instance boots up or migrates, the controller of GWZone
needs to push its forwarding rule to all gateways, leading to
higher latency and overhead.

2) Large-Scale Instances Launching: Fig. 25 shows that
the on-demand rules offloading model has a lower instance
deployment latency compared with the preprogrammed model
when spawning a large number of instances in a large-scale
cloud network. For example, when launching 100k containers
in the public cloud environment, Zeta spends 3178 seconds and
installs 12k default forwarding rules, while Preprogrammed
spends 4097 seconds and programs a total of 3.4M rules. That
is, Zeta reduces the launching time by 24% and the number of
rules by 278× compared with Preprogrammed. The reason for
the above results is that the on-demand rules offloading can
avoid pre-installing numerous entries for instances that never

communicate with each other, thus it reduces the latency of
instances launching.

3) Large-Scale Instances Communication: Figs. 26-28
show the advantages of Zeta gateway cluster under large-
scale networks. As shown in Fig. 26, the average load of Zeta
gateways is close to that of GWZone. However, Zeta gateways
achieve more concentrated load distribution than GWZone and
there is a big gap between maximum and minimum load
of GWZone gateways, which means the superiority of Zeta
gateway cluster in load balancing.

Next, we evaluate the impact of Zeta and GWZone gateways
on FCT. The Normalized FCT of elephant flows and mice
flows are calculated respectively. Fig. 27 shows that though
Zeta and GWZone have the similar normalized FCT, Zeta
still outperforms GWZone by 7% in public cloud scenario,
as there is no flow detection load on hosts. In addition, the
FCT of elephant flows are both smaller than that of mice flows,
because the elephant flows will be forwarded directly.

Finally, we evaluate the packet loss rate of Zeta and
GWZone with offloaded elephant flows and non offloaded
mice flows to prove the scalability of Zeta. Fig. 28 shows
that the packet loss rate of Zeta is lower than that of GWZone
because of the better load balancing effect of Zeta gateway
cluster. For example, in public cloud with the network scale
of 100k containers, the packet loss rate of elephant flows
and mice flows of Zeta is 24% and 37% lower than that
of GWZone, respectively. In addition, the packet loss rate of
elephant flows is higher than that of mice flows. The reason
is that these elephant flows will be forwarded by the gateways
at the beginning, and burst traffic will cause the gateways
overload, resulting in a higher packet loss rate. Therefore, the
packet loss of elephant flows is mainly concentrated in the
initial gateway forwarding period, and the packet loss of direct
path forwarding after offloading will be significantly reduced.

IX. RELATED WORK

Cloud and datacenter virtual networks. There are a
multitude of researches on the cloud/datacenter virtual net-
works, including control plane [61], [62], [63], [64], [65] and
data plane [3], [4], [19], [23], [27]. As a crucial solution,
overlay network adopts tunnel encapsulation protocols (e.g.,
VXLAN [36], NVGRE [66], Geneve [67], etc) to build the
scalable and flexible virtual networks. Virtual network devices
(e.g., vSwitch [32], [68], vRouter [33] and gateway [4]) are
essential in the cloud networks, as they are dedicated to
provide efficient, secure and stable connections for tenants
in clouds. The paper [32] describes the design and imple-
mentation of Open vSwitch (OVS), which is an open source
and widely used software switch for virtual networks. They
focus on the optimization of flow classification and caching
to conserve hypervisor resources. The work [33] builds Dis-
aggregated Software-defined Router (DSR) to serve cloud
inbound/outbound traffic. They split DSR functionalities into
several disjoint modules, each of which can be independently
scaled and maintained, to improve the scalability of DSR. The
work [4] presents the Hoverboard forwarding model, which
adopts gateways to on-demand install forwarding rules and
establish communication at scale. In this paper, we focus on

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SCALABLE AND ROBUST EAST-WEST FORWARDING FRAMEWORK FOR HYPERSCALE CLOUDS 3077

improving the robustness of east-west forwarding with the
designs of gateway cluster and multi IPs migration.

High performance and programmable data plane. Data
plane is the most performance-critical part of the cloud net-
works, which is usually accelerated with specialized hard-
ware components and sophisticated software methods [69].
In hardware, ASIC [23], [70], FPGA [19], [20], [21], [22] and
network processor [71], [72] can provide high-throughput and
low-latency packet processing. For example, the paper [23]
proposes Sailfish, a multi-tenant multi-service cloud gateway
accelerated by programmable switches, of which a single clus-
ter can carry dozens of Tbps traffic. However, the limitation
is that numerous forwarding rules due to multi-tenancy cannot
be stored in the limited on-chip memory. In contrast, software
methods can provide ample on-host memory and have the
advantage of fast and flexible iteration, including DPDK [73],
XDP [25], Netmap [74], etc. Unlike XDP, DPDK achieves
high throughput through bypassing the kernel network stack
and processing packets in user space [73]. However, DPDK
suffers from high CPU utilization. Specifically, DPDK needs
to bind one or more dedicated CPU cores as it adopts the busy
poll mode to pull data packets to the user space, which leads to
its CPU utilization always remaining at 100% [38]. In contrast,
XDP adopts pre-stack processing mechanism and interrupt
mode, which can request CPU resources on demand [25], [38].

eBPF and its applications. Extended Berkeley Packet Filter
(eBPF) is an instruction set and an execution environment
inside the Linux kernel [38]. It enables injecting custom code
into the kernel through various hooks. XDP is one of the
most widely used eBPF hooks for high-performance data
path that can perform packet processing before the kernel
network stack [25]. Currently, eBPF is extensively used in
security [75], tracing [76] and networking [77]. In addition,
eBPF programs can maintain and access persistent memory
through eBPF maps, which are generic key-value stores that
serve as the data channel between different eBPF programs or
user applications [38], [43]. The work [43] presents BMC to
accelerate in-memory key-value store, which adopts XDP for
pre-stack requests processing and uses eBPF maps as in-kernel
cache. In this paper, we implement the timeout mechanism of
eBPF map by ourself, as eBPF map does not support this
mechanism. We further optimize the timeout mechanism with
one map read/write so that it will not lead to throughput
degradation with the increase of entries.

X. CONCLUSION AND FUTURE WORK

In this paper, we propose a scalable and robust east-west
forwarding framework for hyperscale clouds, called Zeta.
Comprehensive experiment results show high robustness and
scalability of Zeta. For example, Zeta reduces the 99% RTT
by 5.1× in burst video traffic, and reduces the gateway pure
recovery delay by 10.8× compared with the state-of-the-art
solutions.

With the stagnant performance of CPU core and the rapid
growth of cloud scale, the traffic growth will far exceed
Moore’s law in the future. Although software-based Zeta
gateway cluster can realize horizontal scaling, it may not

be cost-effective compared with hardware. Fortunately, with
the development of programmable hardware, offloading XDP
programs to SmartNICs is a promising approach.

Another feasible research direction is to learn the com-
munication pattern between VMs to predict the VM-VM
communication and pre-install forwarding rules. Although
Zeta improves the robustness and scalability of east-west
communication in clouds, the gateways will cause forwarding
delay in processing header packets and offloading direct path
rules. Therefore, we will adopt machine learning algorithms to
obtain the VM-VM communication pattern, so as to pre-install
potential forwarding rules to minimize the communication
delay.

REFERENCES

[1] Q. Zhang et al., “Zeta: A scalable and robust east-west communication
framework in large-scale clouds,” in Proc. 19th USENIX Symp. Net-
worked Syst. Design Implement. (NSDI), 2022, pp. 1231–1248.

[2] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 114–119, Feb. 2013.

[3] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proc. 11th USENIX Symp. Networked Syst. Design Implement.
(NSDI), 2014, pp. 203–216.

[4] M. Dalton et al., “Andromeda: Performance, isolation, and velocity at
scale in cloud network virtualization,” in Proc. 15th USENIX Symp.
Networked Syst. Design Implement. (NSDI), 2018, pp. 373–387.

[5] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent
advances in optical technologies for data centers: A review,” Optica,
vol. 5, no. 11, pp. 1354–1370, 2018.

[6] K.-I. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale
wavelength routing optical switch for data center networks,” IEEE
Commun. Mag., vol. 51, no. 9, pp. 46–52, Sep. 2013.

[7] M. Rzepka, P. Borylo, A. Lason, and A. Szymanski, “PARD: Hybrid
proactive and reactive method eliminating flow setup latency in SDN,”
J. Netw. Syst. Manag., vol. 28, no. 4, pp. 1547–1574, Oct. 2020.

[8] V. Bahl, “Emergence of micro datacenter (cloudlets/edges) for mobile
computing,” Microsoft Devices Netw. Summit, vol. 2015, p. 2-1, 2015.

[9] S. Jha et al., “Measuring congestion in high-performance datacenter
interconnects,” in Proc. 17th Usenix Conf. Networked Syst. Design
Implement. (NSDI), 2020, pp. 37–58.

[10] Google Cloud. (2022). Containers at Google. [Online]. Available:
https://cloud.google.com/containers

[11] J. Nam, S. Lee, H. Seo, P. Porras, V. Yegneswaran, and S. Shin, “BAS-
TION: A security enforcement network stack for container networks,”
in Proc. USENIX Annu. Tech. Conf., 2020, pp. 81–95.

[12] S. Choi et al., “FBOSS: Building switch software at scale,” in
Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 342–356.

[13] R. Potharaju and N. Jain, “Demystifying the dark side of the middle:
A field study of middlebox failures in datacenters,” in Proc. Conf.
Internet Meas. Conf., Oct. 2013, pp. 9–22.

[14] J. Wang et al., “A robust service mapping scheme for multi-tenant
clouds,” IEEE/ACM Trans. Netw., vol. 30, no. 3, pp. 1146–1161,
Jun. 2022.

[15] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Observing and
mitigating micro-burst traffic in data center networks,” IEEE/ACM Trans.
Netw., vol. 28, no. 1, pp. 98–111, Feb. 2020.

[16] Y. Li, S. J. Park, and J. K. Ousterhout, “MilliSort and MilliQuery: Large-
scale data-intensive computing in milliseconds,” in Proc. NSDI, 2021,
pp. 593–611.

[17] Amazon AWS. (2022). AWS Nitro System. [Online]. Available: https://
aws.amazon.com/ec2/nitro/

[18] L. Shalev, H. Ayoub, N. Bshara, and E. Sabbag, “A cloud-optimized
transport protocol for elastic and scalable HPC,” IEEE Micro, vol. 40,
no. 6, pp. 67–73, Nov. 2020.

[19] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proc. ACM/IEEE 41st Int. Symp. Comput. Archit.
(ISCA), Jun. 2014, pp. 13–24.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

3078 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

[20] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in
Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2016, pp. 1–13.

[21] B. Li et al., “ClickNP: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proc. ACM SIGCOMM
Conf., Aug. 2016, pp. 1–14.

[22] D. Firestone et al., “Azure accelerated networking: Smartnics in the
public cloud,” in Proc. 15th USENIX Symp. Networked Syst. Design
Implement. (NSDI), 2018, pp. 51–66.

[23] T. Pan et al., “Sailfish: Accelerating cloud-scale multi-tenant multi-
service gateways with programmable switches,” in Proc. ACM SIG-
COMM Conf., Aug. 2021, pp. 194–206.

[24] M. Oppitz and P. Tomsu, “Software defined virtual networks,” in Invent-
ing the Cloud Century. Berlin, Germany: Springer, 2018, pp. 149–200.

[25] T. Hoiland-Jorgensen et al., “The express data path: Fast programmable
packet processing in the operating system kernel,” in Proc. 14th Int.
Conf. Emerg. Netw. EXperiments Technol., Dec. 2018, pp. 54–66.

[26] G. Zhao, H. Xu, S. Chen, L. Huang, and P. Wang, “Joint optimization
of flow table and group table for default paths in SDNs,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1837–1850, Aug. 2018.

[27] OpenStack Project. (2022). OpenStack Basic Networking. [Online].
Available: https://docs.openstack.org/neutron/latest/admin/intro-basic-
networking.html

[28] T. A. Bui and M. Canini, “Cloud network performance analysis: An
OpenStack case study,” M.S. thesis, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium, 2016.

[29] T. Rosado and J. Bernardino, “An overview of OpensTack architecture,”
in Proc. 18th Int. Database Eng. Appl. Symp., 2014, pp. 366–367.

[30] P. R. Srivastava and S. Saurav, “Networking agent for overlay L2 routing
and overlay to underlay external networks L3 routing using OpenFlow
and open vSwitch,” in Proc. 17th Asia–Pacific Netw. Operations Manag.
Symp. (APNOMS), Aug. 2015, pp. 291–296.

[31] A. Saghir and T. Masood, “Performance evaluation of OpenStack
networking technologies,” in Proc. Int. Conf. Eng. Emerg. Technol.
(ICEET), Feb. 2019, pp. 1–6.

[32] B. Pfaff et al., “The design and implementation of open vSwitch,” in
Proc. 12th USENIX Symp. Networked Syst. Design Implement. (NSDI),
2015, pp. 117–130.

[33] H. Shao, X. Wang, Y. Lu, Y. Yu, S. Zheng, and Y. Zhao, “Accessing
cloud with disaggregated software-defined router,” in Proc. NSDI, 2021,
pp. 1–14.

[34] K. Poularakis, Q. Qin, L. Ma, S. Kompella, K. K. Leung, and
L. Tassiulas, “Learning the optimal synchronization rates in distributed
SDN control architectures,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., Apr. 2019, pp. 1099–1107.

[35] S. Luo, H. Xing, and K. Li, “Near-optimal multicast tree construction
in leaf-spine data center networks,” IEEE Syst. J., vol. 14, no. 2,
pp. 2581–2584, Jun. 2020.

[36] M. Mahalingam. Virtual Extensible Local Area Network (VXLAN):
A Framework for Overlaying Virtualized Layer 2 Networks Over Layer
3 Networks, document RFC7348, pp. 1–22, 2014.

[37] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and
H. Casanova, “Overview of GridRPC: A remote procedure call API
for grid computing,” in Proc. Int. Workshop Grid Comput. Cham,
Switzerland: Springer, 2002, pp. 274–278.

[38] M. A. M. Vieira et al., “Fast packet processing with eBPF and XDP:
Concepts, code, challenges, and applications,” ACM Comput. Surv.,
vol. 53, no. 1, pp. 1–36, Jan. 2021.

[39] I. Marinos, R. N. M. Watson, and M. Handley, “Network stack spe-
cialization for performance,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 175–186, Feb. 2015.

[40] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal,
“Understanding host network stack overheads,” in Proc. ACM SIG-
COMM Conf., Aug. 2021, pp. 65–77.

[41] (2022). eBPF Maps. [Online]. Available: https://ebpf.io/what-is-
ebpf/#maps

[42] Cilium. (2022). BPF and XDP Reference Guide. [Online]. Available:
https://docs.cilium.io/en/latest/bpf/

[43] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller, “BMC:
Accelerating memcached using safe in-kernel caching and pre-stack
processing,” in Proc. NSDI, 2021, pp. 487–501.

[44] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “MapTask scheduling
in MapReduce with data locality: Throughput and heavy-traffic optimal-
ity,” IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 190–203, Feb. 2016.

[45] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter
load-balancing with beamer,” in Proc. 15th USENIX Symp. Networked
Syst. Design Implement. (NSDI), 2018, pp. 125–139.

[46] R. Finlayson, T. Mann, J. Mogul, and M. Theimer. Reverse Address
Resolution Protocol, document RFC0903, 1984.

[47] Kubernetes Project. (2022). kubernetes Eviction Policy.
[Online]. Available: https://kubernetes.io/docs/concepts/scheduling-
eviction/eviction-policy/

[48] Kubernetes. (2022). Kubernetes Scheduler. [Online]. Available:
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

[49] (2022). ETCD: A Distributed, Reliable Key-Value Store. [Online]. Avail-
able: https://etcd.io/

[50] E. Mokotoff, “Parallel machine scheduling problems: A survey,” Asia–
Pacific J. Oper. Res., vol. 18, no. 2, p. 193, 2001.

[51] Gurobi. (2022). The Fastest Solver. [Online]. Available: https://
www.gurobi.com/

[52] G. Zhao, H. Xu, J. Liu, C. Qian, J. Ge, and L. Huang, “SAFE-
ME: Scalable and flexible middlebox policy enforcement with software
defined networking,” in Proc. IEEE 27th Int. Conf. Netw. Protocols
(ICNP), Oct. 2019, pp. 1–11.

[53] Google. (2020). Google Cluster-Data. [Online]. Available: https://
github.com/google/cluster-data

[54] iPerf. (2020). The TCP, UDP and SCTP Network Bandwidth Measure-
ment Tool. [Online]. Available: https://iperf.fr/

[55] Bootlin. (2020). The Latest List of NIC Drivers That
Support XDP Native Mode. [Online]. Available: https://elixir.
bootlin.com/linux/latest/A/ident/XDP_SETUP_PROG

[56] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., Nov. 2010, pp. 267–280.

[57] J. Lee et al., “Application-driven bandwidth guarantees in datacenters,”
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 467–478,
Feb. 2015.

[58] K. Bilal and A. Erbad, “Impact of multiple video representations in live
streaming: A cost, bandwidth, and QoE analysis,” in Proc. IEEE Int.
Conf. Cloud Eng. (ICE), Apr. 2017, pp. 88–94.

[59] C. Canel et al., “Scaling video analytics on constrained edge nodes,”
2019, arXiv:1905.13536.

[60] L. Kozma-Spytek, P. Tucker, and C. Vogler, “Voice telephony for
individuals with hearing loss: The effects of audio bandwidth, bit rate
and packet loss,” in Proc. 21st Int. ACM SIGACCESS Conf. Comput.
Accessibility, 2019, pp. 3–15.

[61] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. OSDI, vol. 10, 2010, pp. 1–6.

[62] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” in Proc. ACM SIGCOMM Conf., Aug. 2011,
pp. 254–265.

[63] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. 1st Workshop Hot
Topics Softw. Defined Netw., Aug. 2012, pp. 19–24.

[64] Y.-W.-E. Sung, X. Tie, S. H. Y. Wong, and H. Zeng, “Robotron:
Top-down network management at Facebook scale,” in Proc. ACM
SIGCOMM Conf., Aug. 2016, pp. 426–439.

[65] A. D. Ferguson et al., “Orion: Google’s software-defined networking
control plane,” in Proc. NSDI, 2021, pp. 83–98.

[66] M. Sridharan, NVGRE: Network Virtualization Using Generic Routing
Encapsulation, document RFC 7637, Microsoft, USA, 2011. [Online].
Available: https://www.rfc-editor.org/rfc/rfc7637.html

[67] J. Gross, I. Ganga, and T. Sridhar. Geneve: Generic Network Virtualiza-
tion Encapsulation, document RFC 8926, 2014.

[68] W. Tu, Y.-H. Wei, G. Antichi, and B. Pfaff, “Revisiting the open vSwitch
dataplane ten years later,” in Proc. ACM SIGCOMM Conf., Aug. 2021,
pp. 245–257.

[69] R. Bifulco and G. Retvari, “A survey on the programmable data plane:
Abstractions, architectures, and open problems,” in Proc. IEEE 19th Int.
Conf. High Perform. Switching Routing (HPSR), Jun. 2018, pp. 1–7.

[70] J. Fang, G. Zhao, H. Xu, C. Wu, and Z. Yu, “GRID: Gradient routing
with in-network aggregation for distributed training,” IEEE/ACM Trans.
Netw., early access, Feb. 22, 2023, doi: 10.1109/TNET.2023.3244794.

[71] Netronome. (2022). Agilio CX SmartNICs. [Online]. Available:
https://www.netronome.com/products/agilio-cx/

[72] Nvidia/Mellanox. (2022). Nvidia BlueField Data Processing Units.
[Online]. Available: https://www.nvidia.com/en-us/networking/products/
data-processing-unit/

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNET.2023.3244794

ZHANG et al.: SCALABLE AND ROBUST EAST-WEST FORWARDING FRAMEWORK FOR HYPERSCALE CLOUDS 3079

[73] DPDK. (2022). Data Plane Development Kit. [Online]. Available:
https://www.dpdk.org/

[74] L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in Proc.
21st USENIX Secur. Symp., 2012, pp. 101–112.

[75] Falco. (2022). Cloud Native Runtime Security. [Online]. Available:
https://falco.org/

[76] Bpftrace. (2022). High-Level Tracing Language for Linux Systems.
[Online]. Available: https://bpftrace.org/

[77] Cilium. (2022). eBPF-Based Networking, Security, and Observability.
[Online]. Available: https://cilium.io/

Qianyu Zhang is currently pursuing the Ph.D.
degree in computer science with the University
of Science and Technology of China. His main
research interests include software-defined networks
and cloud computing.

Gongming Zhao (Member, IEEE) received the
Ph.D. degree in computer software and theory from
the University of Science and Technology of China
in 2020. He is currently an Associate Professor
with the University of Science and Technology
of China. His current research interests include
software-defined networks and cloud computing.

Liguang Xie (Senior Member, IEEE) received the
Ph.D. degree in computer engineering from Virginia
Tech, Blacksburg, VA, USA, in 2013. He is cur-
rently a Senior Principal Architect and the Senior
Director of engineering with the Seattle Research
Center, Futurewei Technologies Inc., where he leads
the Cloud Networking Research and Development
Team and oversees cloud networking open-source,
research, and engineering efforts. Before Futurewei,
he was a Senior Software Engineering Lead with
Microsoft Azure Networking and an Adjunct Assis-

tant Professor with the Bradley Department of Electrical and Computer
Engineering, Virginia Tech. His research interests include cloud networking,
software-defined networking, distributed systems, cloud computing, and AI
systems.

Hongli Xu (Member, IEEE) received the B.S. degree
in computer science and the Ph.D. degree in com-
puter software and theory from the University of
Science and Technology of China (USTC), China,
in 2002 and 2007, respectively. He is currently
a Professor with the School of Computer Science
and Technology, USTC. He has published more
than 100 papers in famous journals and confer-
ences, including IEEE/ACM TRANSACTIONS ON
NETWORKING, IEEE TRANSACTIONS ON MOBILE
COMPUTING, IEEE TRANSACTIONS ON PARAL-

LEL AND DISTRIBUTED SYSTEMS, the International Conference on Computer
Communications (INFOCOM), and the International Conference on Network
Protocols (ICNP). He holds more than 30 patents. His research interests
include software-defined networks, edge computing, and the Internet of
Things. He received the Outstanding Youth Science Foundation of NSFC in
2018 and the best paper award or the best paper candidate at several famous
conferences.

Zhuolong Yu received the bachelor’s and master’s
degrees from the University of Science and Tech-
nology of China and the Ph.D. degree from the
Department of Computer Science, Johns Hopkins
University. His research interests include networking
systems, with a focus on programmable networks.

Yangming Zhao received the B.S. degree in com-
munication engineering and the Ph.D. degree in
communication and information systems from the
University of Electronic Science and Technology of
China in 2008 and 2015, respectively. He is currently
a Research Professor with the University of Science
and Technology of China. His research interests
include network optimization, data center networks,
edge computing, and transportation systems.

Chunming Qiao (Fellow, IEEE) is currently a
SUNY Distinguished Professor and the current
Chair of the Computer Science and Engineering
Department, SUNY at Buffalo, Buffalo, NY, USA.
He has been working as a consultant for several IT
and telecommunications companies since 2000. His
research has been funded by a dozen major IT and
telecommunications companies, including Cisco and
Google, and more than a dozen NSF grants. His cur-
rent focus is on connected and autonomous vehicles.
He has published extensively with an H-index of

more than 69. He holds seven U.S. patents. He was elected to IEEE Fellow for
his contributions to optical and wireless network architectures and protocols.
Two of his papers have received the best paper awards from IEEE and Joint
ACM/IEEE venues.

Liusheng Huang (Senior Member, IEEE) received
the M.S. degree in computer science from the Uni-
versity of Science and Technology of China in 1988.
He is currently a Senior Professor and a Ph.D.
Supervisor with the School of Computer Science
and Technology, University of Science and Tech-
nology of China. He has authored or coauthored
six books and over 300 journals/conference papers.
His research interests include the Internet of Things,
vehicular ad-hoc networks, information security, and
distributed computing.

Ying Xiong received the Ph.D. degree in computer
and information systems. He is currently the Head
of Cloud Lab and the Technical VP with Futurewei
Technologies Inc., Santa Clara, CA, USA. He has
more than 20 years of experience in distributed
system design and large-scale cloud platform imple-
mentation. His research interests include cloud and
edge computing, virtual networks, and large-scale
network management in the cloud, as well as AI
platforms for optimizing ML applications.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:18:40 UTC from IEEE Xplore. Restrictions apply.

