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Abstract— With the growth of model/dataset/system size for
distributed model training in datacenters, the widely used
Parameter Server (PS) architecture suffers from communication
bottleneck of gradient transmission. Recent works attempt to
utilize programmable switches to implement in-network gradient
aggregation and alleviate communication bottlenecks on PSs.
Due to the limited on-chip memory of programmable switches,
gradient transmission requires strict synchronization to achieve
ideal aggregation performance. However, the distributed training
system is usually heterogeneous in datacenters (e.g., computation
and bandwidth heterogeneity), and the gradient will reach the
aggregation nodes asynchronously, thereby seriously affecting the
aggregation performance. To solve the above issue, we propose
XAgg, which accelerates heterogeneous gradient aggregation
by deploying the eXpress Data Path (XDP) based aggregator
on servers. Specifically, the abundant idle memory on servers
can cache the entire gradient, so as to effectively deal with
asynchronous gradient transmission in heterogeneous scenarios.
Moreover, XDP can provide high-performance and low-latency
gradient aggregation. We conduct microbenchmark and testbed
with real-world DNN models and datasets. Experimental results
show that XAgg improves the gradient aggregation throughput by
3.3× compared with TCP-based aggregation, reaching 100 Gbps
with 10 CPU cores. In addition, XAgg reduces communication
time by 49%-82% compared with state-of-the-art solutions.

Index Terms— In-network gradient aggregation, distributed
model training, eXpress data path (XDP).

I. INTRODUCTION

IN RECENT years, the development of Deep Neural Net-
work (DNN) has led to breakthroughs in various fields,

including computer vision [1], natural language processing
[2] and recommendation systems [3]. With the increasing
complexity of applications, the current DNN training shows
the trend of building increasingly sophisticated models on
large datasets [4] for better prediction performance. In order
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to cope with the surge of training computation, distributed
training (DT) is widely deployed in datacenters, and usually
includes two types of nodes: workers and parameter servers
(PSs) [5]. Specifically, in each iteration, the workers first train
the models and transmit their local gradients to the PS(s),
where gradients are tensors, i.e., arrays of values. PS(s) are
responsible for aggregating the gradients from all workers and
sending the aggregated gradients back to workers. Typically,
training a DNN model requires hundreds of iterations on
the dataset until convergence [6], which is a time-consuming
process.

With the development of GPU [7] and other hardware accel-
erators [8], [9], computation performance has been improved
62× over the past 7 years [10], [11]. As a result, the
performance bottleneck of DT in datacenters has gradually
shifted from computation to communication, i.e., gradient
transmission [10], [12]. For example, when a PS-based DT
task trains the DeepLight model with 100 Gbps bandwidth,
79% of the total time is occupied for intra-cluster commu-
nication [13]. Prior works try to alleviate the communication
bottleneck through gradient compression [12], [14], [15], [16]
or communication scheduling [17], [18], [19], [20], [21]. For
example, OmniReduce [12] leverages gradient sparsity and
only sends non-zero data blocks to minimize traffic transfer.
However, gradient compression suffers from a decrease of
training accuracy. As the representative of communication
scheduling, BytePS [21] transmits gradients in layers of the
model, increasing the overlap between local training and
gradient transmission, but does not actually reduce the total
transmission amount. Nowadays, with the increasing com-
putation capacity provided by programmable switches, some
works propose in-network aggregation (INA) as a promising
solution [13], [22]. Specifically, INA utilizes programmable
switches to aggregate gradients in the transmission path from
workers to PS(s), and these programmable switches only send
the aggregated results to PS(s). In this way, INA helps to
reduce the transmission traffic from workers to PS(s), improve
training throughput and accelerate the model training.

However, the current in-network aggregation methods based
on P4 programmable switches suffer from limited on-chip
memory, and the aggregation performance will be seriously
affected especially in heterogeneous scenarios. On the one
hand, there is a gap between the on-chip memory size
of programmable switches (e.g., the on-chip memory of
Wedge100BF-32x is 22MB [23]) and the gradient size (e.g.,
the size of BERT model is 1274MB [13]). Existing solutions
divide the local gradients of workers into fixed size fragments,
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and partition the memory of the programmable switch into
units of the same size [13], [22]. The gradients of all workers
should arrive strictly synchronously to obtain the optimal
aggregation rate, as a memory unit can only store gradient
fragments with the same index. On receiving the same gra-
dient fragments from all workers, the switch completes the
aggregation of this fragment, and the corresponding memory
unit can be reused for subsequent aggregation. On the other
hand, the practical system is usually heterogeneous, includ-
ing heterogeneous computation capacity and link bandwidth.
However, it is difficult for the heterogeneous system to achieve
strict synchronization of gradient transmission, because the
actual aggregation performance of programmable switches is
affected by the short board effect. Specifically, the worker(s)
with the weakest computation capacity determine the local
training completion time, and the minimum link bandwidth
limits the aggregation rate.

An intuitive solution is expanding the on-chip memory of
the programmable switch so as to store the entire model.
But this means complex chip reconfiguration and huge costs.
Alternatively, we observe that there are abundant idle CPU
and memory resources on the servers in the datacenter.
For example, Alibaba’s statistics show that there are 60%
idle CPUs and 35% free memory in its datacenters [24],
[25]. This is because the load balancer uses a conservative
resource allocation strategy to reserve massive CPU/memory
resources to cope with performance spike [25]. We explore
deploying gradient aggregation programs on one or more
servers before the PS, utilizing the remaining computation
and memory resources to accelerate gradient aggregation.
The abundant idle memory on servers can cache the entire
gradient and wait for stragglers to catch up, so as to deal with
computation/bandwidth heterogeneity.

However, two factors will limit the performance of gra-
dient aggregation with idle resources on servers. First, the
performance bottleneck of the kernel network stack makes
it difficult to achieve high throughput gradient aggregation
and forwarding on servers [26], [27]. Second, gradient traffic
may be aggregated and forwarded across several servers,
resulting in high transmission delay, even up to hundreds of
milliseconds [28].

Fortunately, eXpress Data Path (XDP), as a pre-stack packet
acceleration technology [29], [30], can effectively eliminate
the performance bottleneck from the network stack. Specif-
ically, XDP offloads gradient aggregation logic to the NIC
driver in front of the network stack. The significant advantage
of XDP is that it can achieve high performance and low latency
gradient aggregation at 100Gbps. Meanwhile, the throughput
of TCP-based aggregation only reaches 30 Gbps by the exper-
iments in §VI-B. In addition, XDP can organize idle memory
resources through the eBPF map [30], and caches the gradients
of the entire model on hosts, so as to guarantee the aggre-
gation performance in heterogeneous scenarios. Moreover,
XDP has additional benefits, including flexible deployment
without hardware support, less impact on non-gradient traffic
transmission and on-demand CPU resources occupation.

In this paper, we propose a novel distributed training frame-
work, called XAgg, which deploys XDP-based aggregators

on servers in datacenters to accelerate model training of
heterogeneous systems. The XDP-based aggregator can realize
gradient aggregation and forwarding at 100 Gbps line rate
with low latency. Although XDP has effectively improved the
aggregation performance of a single host, XAgg still faces
two challenges in building an reliable and efficient aggrega-
tion tree. First, the existing ACK-based reliable transmission
mechanism [13], [22] is complex to implement, and brings
high overhead, which significantly degrades the aggregation
performance of XAgg. Second, the existing aggregation tree
construction strategies based on multicast [31] or Steiner tree
[32] usually need to solve linear programming, and their high
time complexity is not suitable for XAgg.

The main contributions of this paper are as follows:
• We propose XAgg, which deploys XDP-based aggre-

gators on servers to achieve high-performance and
low-latency gradient aggregation, thus accelerating
heterogeneous distributed training.

• XAgg adopts a group-based acknowledgment mechanism
for reliable transmission.

• XAgg proposes a low-time complexity strategy based
on k-tree to construct the aggregation tree so as to
effectively utilize the idle resources on servers. Moreover,
the aggregation topology can be dynamically adjusted
according to the server load.

• We conduct testbed with real-world DNN models and
datasets. The experimental results show that XAgg
improves the aggregation throughput by 3.3× com-
pared with TCP-based aggregation. In addition, XAgg
reduces communication time by 49%-82% compared with
state-of-the-art solutions.

II. BACKGROUND AND MOTIVATION

We give an example to analyze the pros and cons of two
existing solutions for distributed model training and motivate
our study in this section.

A. A Motivation Example

Consider a distributed model training system contain-
ing 1 PS and 4 workers (i.e., W1, W2, W3 and W4). To
simulate bandwidth heterogeneity, the ingress/egress band-
width of PS, W1, W3 and W4 is set to 10 Gbps, while that of
W2 is set to 5 Gbps. To simulate computation heterogeneity,
each iteration of local model training for W3 is set to complete
two seconds slower than other three workers. In addition, for
the convenience of calculation, we assume that the gradient
size of the model is 1.25 GB. Thus, it takes 1 second for
a worker to send the local gradient to the PS with 10 Gbps
bandwidth.

As a classic framework, Parameter Server (PS) is widely
adopted in distributed model training [5], [33]. As shown
in Fig. 1(a), after a iteration of training, workers push their
local gradients to the PS over the network for aggregation.
Then, workers pull the updated gradients from the PS for
the next iteration of training. In our example, when W1,
W2 and W4 finish training, they share the 10 Gbps band-
width of PS and send gradients at 10

3 Gbps in 0-2s. Then,
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Fig. 1. A distributed training task contains 1 PS and 4 workers, each equipped with a 10 Gbps NIC. The available ingress/egress bandwidth of PS, W1,
W3 and W4 is 10 Gbps, while that of W2 is 5 Gbps. Moreover, each iteration of training for W3 completes two seconds later than the other three workers.
(a) PS model takes 4s to complete aggregation. (b) Heterogeneous link bandwidth and computation capacity seriously affect the aggregation performance of
programmable switches, and its actual aggregation time is also 4s. (c) The XDP-based aggregation program is deployed on servers in the datacenter, using
idle CPU and memory for gradient pre-aggregation and caching, respectively. The aggregation time is only 3s.

W3 completes training and starts sending gradients at 2s, and
the transmission rate of the four workers reduce to 2.5 Gbps.
W1, W2 and W4 complete the gradient transmission at 10

3 s.
Meanwhile, W3 monopolizes all the bandwidth, increasing
transmission rate to 10 Gbps. Finally, W3 completes the
gradient transmission at 4s. Since all workers need to share the
network bandwidth of PS, gradient transmission will bring a
communication bottleneck to distributed model training. Even
if we adopt pipeline transmission, the bandwidth bottleneck of
PS determines that the theoretical communication time is still
at least 4s.

To reduce gradient transmission overhead from workers to
the PS and accelerate training, several prior works realize
in-network aggregation with programmable switches, such as
SwitchML [13] and ATP [22]. In an ideal situation, all workers
start sending gradients at the same rate simultaneously. The
programmable switch can efficiently aggregate the received
gradients and forward the aggregated results to the PS, which
can significantly reduce the gradient traffic sent to the PS and
eliminate the bandwidth bottleneck. In practice, workers can-
not guarantee strict synchronization of gradient transmission,
that is, there are inconsistencies in the gradient transmission
bandwidth and start time among different workers. Because the
limited on-chip memory of the programmable switch cannot
cache all unaggregated gradients, workers will not send the
subsequent gradients until receiving the previous aggregated
results. Therefore, the actual aggregation bandwidth of the
programmable switch depends on the smallest transmission
rate, and the aggregation start time depends on the latest
training completion time.

Fig. 1(b) illustrates how heterogeneous bandwidth and
computation capacity slow down the aggregation time of the
programmable switch. When W1, W2 and W4 finish training
and start to send gradients, the memory of the programmable
switch is quickly filled with the gradient fragments of W1 and
W2. Because W3 has not finished training, the programmable
switch cannot complete the gradient aggregation and has to
wait. Meanwhile, W4 sends its gradients to the PS at 10 Gbps
in 0-1s. Then, W3 completes training and starts sending

gradients at 2s, and the programmable switch starts the aggre-
gation operation and pushes the aggregated gradients to the PS.
Programmable switch cannot perform in-network aggregation
at full bandwidth, because the transmission bandwidth of
W2 is only 5 Gbps. As a result, the entire aggregation process
takes 4s, and the programmable switch does not fully utilize
its processing capability to accelerate gradient aggregation.

B. Our Intuition

We observe from the above examples that the in-network
aggregation performance will be significantly affected if the
gradient transmission of the workers is not synchronized. One
possible solution is to add more on-chip SRAM memory or
external on-host DRAM memory to programmable switches.
However, adding on-chip SRAM memory is impractical due to
cost and complexity concerns. Meanwhile, using the DRAM
of the directly connected server for storage expansion has the
disadvantage of insufficient bandwidth between the switch and
the server. Therefore, the memory of programmable switch
will not increase dramatically in the future.

The underutilized CPU and memory resources of servers
in the datacenter inspire our solution. Statistics show that the
remaining memory on servers is usually abundant, even up to
tens of GB [24], [25]. We can deploy gradient aggregators
on servers and use the remaining bandwidth, computation
and memory resources to undertake in-network aggregation.
On the one hand, idle servers expand the aggregation band-
width. On the other hand, the abundant idle memory can cache
the whole model. Thus, we explore the potential of gradient
aggregation using idle resources in accelerating asynchronous
gradient transmission.

Fig. 1(c) shows that gradient pre-aggregation with idle
resources on servers can fully utilize bandwidth and reduce
transmission time. When W1, W2 and W4 finish training,
they all send gradients to their aggregation nodes. Specifically,
W1 and W2 send gradients to server S1 at 5 Gbps in 0-2s, and
W4 takes one second to send gradients to the PS at 10 Gbps.
Then, W3 finishes training and starts sending gradients at 2s.
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Fig. 2. XAgg System Overview. Gradient Aggregation Module deploys
XDP-based aggregators on servers to accelerate gradient aggregation. Frame-
work Management Module is responsible for selecting aggregation nodes from
servers and constructing the aggregation tree.

As S1 has aggregated and stored the gradients of W1 and
W2, it can immediately aggregate the received gradients from
W3 and send the aggregated results to the PS.

C. Challenges

Line Rate Aggregation. The main challenge for gradient
aggregation on servers is to implement gradient aggregation
and forwarding at line rate. Many prior works [26], [27], [34]
have shown that the kernel network stack is the main bottle-
neck of data transmission in datacenters. In addition, massive
traffic will significantly increase the processing delay of the
network stack. For example, concurrent TCP connections will
result in long latency due to queueing delays, even up to
hundreds of µs [27]. As a result, massive gradient aggregation
and forwarding will cause huge overhead and delay due to the
complex processing of the network stack.

DPDK vs. XDP. We seek a network acceleration technology
for high-performance gradient aggregation and forwarding.
We first consider the widely used framework DPDK [35],
which is a kernel bypass approach for high-speed packet
processing. Although DPDK offers the highest performance
among the existing frameworks [36], it is not suitable to
deploy on servers for gradient aggregation. DPDK needs to
bind a dedicated NIC and moves the NIC’s control from the
kernel to the user space. This will bring management issues
to the server and affect the transmission of regular traffic,
especially in the case that cheap/sparse CPU machines are
not always equipped with dedicated NICs. Second, DPDK
needs to bind dedicated CPU cores and adopts busy polling
to process packets. Thus, the usage of these dedicated CPU
cores is always pegged at 100%, even without any packets,
which brings large unnecessary overhead to servers.

XDP is a pre-stack packet acceleration technology that has
been widely used in load balancing, DDoS detection and
other fields [29], [30]. Unlike DPDK, XDP processes gradient
packets before the network stack, and other traffic will still
be processed by the stack. Thus, XDP will not affect the
regular traffic of servers, and can use the management interface
and security guarantees offered by kernel [29]. In addition,
XDP requires CPU resources on demand instead of occupying
dedicated CPU cores, which can effectively save the power
of selected servers. Finally, we choose XDP as the data
plane technology for the gradient aggregation on servers,
which can achieve high-performance and low-latency gradient
aggregation with less overhead.

III. SYSTEM OVERVIEW

We propose an XDP-based gradient aggregation frame-
work, called XAgg. XAgg leverages the underutilized CPU
and memory resources of servers in datacenters for gradient
aggregation, thereby accelerating distributed model training,
especially with heterogeneous bandwidth and device perfor-
mance. As shown in Fig. 2, XAgg consists of two core
modules: Gradient Aggregation and Framework Management.

Gradient Aggregation Module deploys XDP-based aggre-
gators on servers to provide high-performance and low-latency
gradient aggregation services for distributed model training.
The selected servers, workers and the PS form a gradient
aggregation tree. In the aggregation tree, the gradient sender
is regarded as the child node, and the gradient receiver
is regarded as the parent node, i.e., the aggregation node.
Specifically, the gradient aggregation module contains four
components as follows:
• Worker Agent. When the worker completes a iteration

of local training, the worker agent will encapsulate the
gradient fragments into the UDP packets with the cus-
tomized format, and send them to the aggregation node
(§IV-A).

• XDP-based Aggregator. XAgg deploys an XDP aggre-
gation program on each selected servers and the PS.
When the aggregator receives the gradient packets from
the child node, it will perform the aggregation operation
and send the aggregated results to its parent node, i.e.,
upper aggregator (§IV-B).

• Rate Negotiator. XAgg performs rate negotiation
between parent and child nodes to fully utilize bandwidth
while avoiding congestion. Rate negotiation includes ini-
tialization and update periods (§IV-C).

• Reliable Transmitter. XAgg adopts group-based
acknowledgement mechanism to achieve reliable
transmission with less overhead (§IV-D).

Framework Management Module manages the entire
XAgg distributed model training system. It is responsible for
selecting aggregation nodes from servers and constructing the
aggregation tree (§V). In addition, the aggregation topology
can be dynamically adjusted according to the load status
reported by servers.

IV. AGGREGATION MODULE DESIGN

A. Worker Agent Design

XAgg Packet Format. XAgg transmits gradient fragments
based on IP protocol. Specifically, XAgg customizes the pay-
load of IP packet, which contains the XAgg header field and
the gradient array field. Fig. 3 shows the packet format of an
XAgg gradient fragment. The XAgg Header field contains
metadata about the fragment. The Host ID field is a 32 bits
one-hot encoding and is used to identify each host (worker,
aggregation server and PS) in the network. The Gradient
ID field is the identifier of a gradient data fragment. The
Gradient Array field contains 256 × 4 bytes gradient
values.

Gradient Array Size. The size of the gradient array
transmitted by each XAgg packet needs to be carefully
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Fig. 3. XAgg Packet Format. It customizes the payload of IP packet,
including the XAgg header and the gradient array field.

Fig. 4. Aggregator Storage Format. XAgg on each server caches the received
gradients by an array map. Each array element stores the aggregated gradients
with the same index.

determined. Obviously, a packet carrying more gradient data
would improve the goodput and reduce the overhead of packet
header processing. For example, the total Ethernet frame
length of a 320-element gradient payload is 1328 bytes, and
its goodput is 96.39%. While the goodput of a 32-element
payload is only 72.73%. However, an excessively large gra-
dient array size will increase the aggregation time of one
packet, which could lead to the loss of later arriving packets,
thereby reducing the actual gradient throughput. Therefore,
there is a trade-off between theoretical goodput and actual
gradient throughput. In our implementation, we select 256-
element gradient payload according to the experimental results
in §VI-B.

Floating-Point Numbers. Gradient values are usually float-
ing point type. However, the current XDP program does not
support floating point operations and only supports integers.
We adopt a scheme similar to the prior works [13], [22], where
the workers multiply the floating point number by a factor (i.e.,
108) and then round it to a 32-bit integer. The aggregators only
perform integer addition operations. When workers receive the
aggregated gradient data broadcast by PS, they convert these
32-bit integers back to floating point numbers through dividing
by the factor, and then divide by the number of workers.

Agent Interacts with ML Framework. The interaction
between the worker agent and the ML framework is mainly
in gradient sending and receiving phases. XAgg uses PyTorch
[37] and can be easily ported to other ML frameworks. After
a round of training, the agent converts the gradient into a one-
dimensional vector. In order to fully utilize bandwidth, the
agent uses multiple processes to send gradients in parallel.
The agent divides the vector into several parts, each of which
is delivered to the C-based sending process and sent to the
aggregation node. The aggregated gradient will be received
by XDP deployed on the worker side and cached in the eBPF
map, which is similar to the implementation of aggregation

Algorithm 1 XDP-Based Aggregator Logic
Initialize Aggregator Metadata:
1: Achieve child and parent node(s) from the control plane.
2: n = number of child node(s).
3: N = number of gradient fragments.
4: Agg_array[0:N] = {0}.
Upon Receiving Gradient pkt{id, idx, grad[0:256]}:
5: agg = Agg_array[pkt.idx]
6: if agg.bitmap == (agg.bitmap | pkt.id) then
7: Drop pkt.
8: agg.bitmap += pkt.id
9: agg.counter++

10: for i in [0:256] do
11: agg.grad[i] += pkt.grad[i]
12: if agg.counter == n then
13: Forward agg to parent node.
After an Epoch, Reset Aggregator Metadata.

nodes. The worker agent will then obtain the gradient vector
from the eBPF map and convert it to the model parameter
format, passing it to Pytorch for the next round of training.

B. XDP-Based Aggregator Design

Aggregator Storage Format. XDP-based aggregator on
each server caches the received gradient data by an array
map [30]. As shown in Fig. 4, each array element stores
the aggregated gradient data of XAgg packets with the same
index and contains several fields. The bitmap field records
which child node’s gradient fragment has been received and
aggregated by the aggregator. The counter field indicates
the number of child nodes aggregated in the gradient data.
The gradient array field stores aggregated gradient from
distinct child nodes and contains 256 gradient values.

Aggregator Workflow. The workflow of XDP-based aggre-
gator on each server is describe as Alg. 1. The aggregator
first initializes its metadata, including child/parent node(s),
number of gradient fragments and aggregator array. Once
a gradient packet pkt arrives, the aggregator first locates
the particular array element agg by pkt.idx, and checks
whether agg contains the gradient data of pkt or not. If not,
the aggregator updates the agg.bitmap and increases the
agg.counter by one. The aggregator then adds the gradient
values of pkt and the local gradient array agg.grad in
order. If the agg.counter equals the number of child nodes
N , the aggregation of the gradient fragment is completed,
and the aggregator will forward this gradient fragment to its
parent node. When the aggregation of an epoch completes, the
aggregator will reset the metadata.

C. Rate Negotiator

XAgg wants to make full use of the available bandwidth
of the link between servers while avoiding loss of gradient
packets caused by congestion. Each node is equipped with a
rate negotiator, which dynamically adjusts the gradient trans-
mission rate according to the real-time remaining bandwidth
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of the link. Rate negotiation is divided into rate initialization
and rate update periods.

Rate Initialization. When a worker completes local train-
ing, it will request the initial gradient sending rate from its
parent node. We use P = {p1, p2, . . . , p|P |} to denote the
parent nodes, i.e., aggregators, including the selected servers
and the PS. We denote Cp = {c1, c2, . . . , cnp

} as the child
nodes set of parent node p ∈ P , where np is the number
of child nodes of the parent node p. Let btx

c,p represent the
sending bandwidth from the child node c ∈ Cp to its parent
node p ∈ P . In addition, we use Bin

p and Bout
p to denote

the idle ingress and egress bandwidth available to the parent
node p, respectively. Therefore, for each parent node p ∈ P ,
its ingress and egress bandwidth should satisfy the following
inequalities at every moment:

∑
c∈Cp

btx
c,p ≤ Bin

p , ∀p ∈ P

min
c∈Cp

btx
c,p ≤ Bout

p , ∀p ∈ P
(1)

The first set of inequalities indicates that the total sending
bandwidth of the child nodes should not exceed the maximum
ingress bandwidth of their parent node. The second set of
inequalities indicates that the minimum sending bandwidth
among child nodes should not exceed the egress bandwidth
of the parent node. This is because the aggregate gradient
bandwidth of the parent node depends on the minimum
sending rate among its child nodes.

In order to ensure that each aggregation node in XAgg
satisfies the above bandwidth constraints, all workers will
negotiate with their parent nodes (i.e., aggregators) to obtain
the initial gradient sending rate. Specifically, when a worker
completes local model training, it first sends a ready notifi-
cation to its parent node, and informs the parent node of its
maximum sending bandwidth. After the parent node receives
the gradient sending request from a worker, the request will be
transferred to the upper layer in turn until the root node (i.e.,
PS). When the PS receives the request, it will calculate the
sending bandwidth for its child nodes according to Iq. (1) and
reply to the child node. After obtaining the calculation result,
the child node of the PS will repeat the above calculation and
reply operations. Finally, the worker starts sending the local
gradient to its parent node (i.e., aggregator) at the negotiated
rate.

Rate Update. When a worker starts or finishes sending, the
sending rate of other workers with the same parent node will
be updated. First, when a worker completes training, it will
request sending bandwidth from the parent node, and the total
bandwidth will be reallocated. Other workers will be notified
to reduce the sending rate to free up bandwidth for the newly
joined worker. Second, when a worker finishes sending, it will
notify its parent node. The parent node will reallocate the
bandwidth released by this worker to other workers.

In addition, due to network dynamics, XAgg can adjust the
sending rate of the workers to adapt to the real-time network
status, so as to avoid network congestion and massive packet
loss. Specifically, the aggregation node will count the packet
loss rate for each worker. If the packet loss of one worker

Fig. 5. Illustration of Group-Based Reliable Transmission. XAgg logically
divides every 1024 packets into a group. When the aggregator receives the
last packet of each group, it will check whether the packet of the group is
received completely, and inform the corresponding worker of the lost indexes
for retransmission.

exceeds the threshold (such as 1%) in a statistical period,
the aggregator will notify the worker to reduce the sending
bandwidth according to the packet loss rate. We will elaborate
on how to count packet loss in the next section (§IV-D).

Rate Update Delay. The delay of rate initialization/update
is very small. Experimental results show that the average
delay of rate initialization and rate update is 9.6ms and
1.7ms, respectively, which is negligible compared with the
training/gradient transmission time.

There is still a small probability that one worker completes
training or finishes sending during the rate negotiation period.
This worker will immediately notify its parent node, and its
parent node will reallocate bandwidth and notify all affected
child nodes. The send rate of the affected child nodes will
adjust according to the latest received notification to deal with
rate staleness.

D. Reliable Transmitter

A native solution for reliable transmission is to leverage
the ACK acknowledgement mechanism like TCP protocol,
which is adopted by some prior works [13], [22]. Consid-
ering that XAgg will perform rate negotiation (§IV-C) and
aggregation nodes selection (§V), the sending rate of workers
and aggregation topology will be determined according to the
idle bandwidth and capacity of the aggregators. Therefore, the
packet loss caused by network congestion and aggregator over-
load will be effectively reduced. On the other hand, replying
ACK for each packet will bring extra overhead to both the
aggregators and workers. Furthermore, it is too complicated to
implement the delayed acknowledgment in the XDP program,
and the overhead will degrade the aggregation performance.

As a result, XAgg adopts group-based acknowledgement
mechanism to achieve reliable transmission, where lost gra-
dient packets are detected by receivers. Specifically, XAgg
logically divides the gradient packets of each worker into
groups by a configured number (e.g., 1024). Once receiving
the end packet of each group, the aggregator will lookup the
corresponding index range in gradient array and check whether
all packets of the group are received. If packet loss is found,
the lost indexes will be fed back to the corresponding worker,
and this worker will retransmit the lost gradient packets.
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Fig. 5 illustrates the interaction between the worker
(assuming the host id is 1) and the aggregator for reliable
transmission, where the aggregator contains an XDP-based
aggregation program and a checking program. The aggregator
maintains an FIFO map (i.e., Check Queue) in kernel space
to store the indexes to be checked. In addition, the aggregator
maintains a Checked List and a Lost List in user space. Upon
receiving the gradient packets from worker, the aggregator
calculates whether the packet is the last one of a group or
not. If so, the aggregator will put this packet’s host id and
index into the Check Queue. XAgg sets 1024 packets as a
group, which is beneficial to adopt bit operations to speed up
the modulo calculation for judging the end packet. As shown
in Fig. 5, the gradient packet with index 8192 is identified as
the last one of a group, the tuple (1, 8192) will be pushed into
the Check Queue.

Meanwhile, the aggregator pulls the index to be checked
(i.e., 2048) from the Check Queue, checks whether there is
any packet loss in the [1025, 2048] interval of the gradient
array, and appends tuple (1, 2048) to the Checked List. The
aggregator then stores the indexes of the lost packets in
the Lost List and informs the corresponding worker of the
lost indexes. Next, the worker agent will retransmit the lost
gradient packets.

Finally, when the worker completes the gradient sending,
it will notify the aggregator agent. The aggregator performs
the following three check items to ensure the correct reception
of all gradient data. (i) Check the tail fragments that cannot
be divided by 1024. (ii) Traverse the Checked List to confirm
whether the end packet of each group has been checked or
not, so as to avoid that the group is not checked due to the
loss of the end packet. (iii) Traverse the Lost List to check
whether all retransmitted packets have been received or not.

V. MANAGEMENT MODULE DESIGN

XAgg proposes a k-tree based aggregation topology
construction strategy to maximize the utilization of idle com-
putation and bandwidth resources of servers. The aggregation
topology construction includes three steps: worker perfor-
mance evaluation, aggregation nodes selection and aggregation
tree construction.

We note that the selection of aggregation nodes can be
transformed into a multicast problem [31] or a terminal Steiner
tree problem [32], that is, constructing multicast trees or
selecting Steiner points. However, the above problems have
been proved to be NP-hard [32], [38]. The existing meth-
ods usually solve linear programming to obtain approximate
solutions [38], [39], [40], which takes a long time and is not
practical enough. We propose a lightweight aggregation tree
construction method based on k-ary tree.

We consider the widely used leaf-spine topology in dat-
acenters, which can provide non-blocking connections for a
large number of servers [41]. On the one hand, the link
delay is predictable since communication between two servers
in a two-layer leaf-spine topology goes through up to three
switches. On the other hand, the link delay of the current
datacenter has reduced to several tens of microseconds. For
example, the TCP round-trip delay in Google datacenter is

∼40µs [42]. According to Section VI-C, XAgg can reduce the
per-epoch communication time of large size models by several
seconds. Obviously, the benefit of aggregation acceleration is
much greater than the cost of link delay.

Worker performance evaluation. XAgg first evaluates
the overall performance of each worker, and workers with
similar performance will be preferentially assigned to the same
aggregation node. Specifically, we adopt the PS architecture
for the first round of training, in which the training time
t1 and the transmission time t2 of each worker is recorded
[43]. In this way, we obtain the total time t = t1+t2 of each
round for each worker. We then sort t and build an aggre-
gation tree. Therefore, the overall performance (training and
communication) of the worker assigned to each aggregation
node is similar. It should be noted that if the proportion of
communication time is lower than the threshold (e.g., 10%),
the model does not need to be accelerated and XAgg will exit.

Aggregation Nodes Selection. We then select a set of
alternative servers according to the resource usage reported
by the servers. Specifically, we consider two screening criteria.
(1) The sum of used memory and model size cannot exceed
80% of the total memory, so that there is redundant memory
for new tasks on the server. (2) The idle bandwidth does not
exceed 10n Gbps, where n is the number of idle CPU cores.
Considering that a single CPU core can aggregate and forward
gradients at a rate of ∼10 Gbps (§VI-B). In order to make
full use of the bandwidth resources of the server, we hope
that the gradient processing capacity of the idle CPU cores
on the server can reach the available bandwidth. Then, we sort
the idle resources of the alternative servers in descending order
with the priority of {bandwidth, CPU, memory}.

Aggregation Tree Construction. Next, we construct a
k-ary aggregation tree according to the number of workers,
where each aggregation node has at most k child nodes.
We use w to denote the number of workers. Let h denote
the height of the aggregation tree. The k-ary aggregation tree
needs to satisfy the following inequality:

kh−2 < w ≤ kh−1

k, h, w ≥ 2
k, h, w ∈ N∗

(2)

We calculate h = ⌈1 + logk w⌉. In practice, we need to
make a trade-off between the aggregation rate and the number
of aggregation nodes, that is, to determine the number of child
nodes k of the aggregation node. To simplify the analysis,
we assume that each aggregation node’s ingress and egress
bandwidth is B. If k equals 2, the aggregation tree is a binary
tree, and the theoretical aggregation bandwidth can reach half
of the bandwidth of the aggregation nodes, but it requires
more aggregation nodes. If k increases to a large value, the
aggregation tree requires fewer aggregation nodes, but the
theoretical aggregation bandwidth can only reach 1

k of the
bandwidth B. In practice, we usually choose the value of k
from 2 to 5 according to the number of alternative aggregation
nodes.

We start building the aggregate tree from the bottom (i.e.,
from worker side). We determine the number of child nodes
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Fig. 6. Packet processing rate vs. No. of gradients in a packet.

(≤k) that each candidate server can serve according to its
available bandwidth. First, we take the first server from the
candidate servers and assign it to k workers. Let’s denote
the ingress bandwidth of the selected server as B1, then the
average sending rate of the above k workers is B1

k , and we
denote this sending rate as the reference rate b. We continue to
allocate idle servers to other workers. For server i, we calculate
the value of ⌈Bi

b −
1
2⌉ as the number of its child nodes. We use

the above method to further construct the aggregation tree
layer by layer, and the root node of the aggregation tree is
the PS.

After we finish constructing the aggregation tree, we will
traverse all the aggregation nodes. If an aggregate node has
only one child node, this node will be removed and its
child node will be directly connected to its parent node.
This is because the aggregation node with one child node
cannot speed up gradient aggregation, but instead increases
transmission delay and resource overhead. Accordingly, the
total number of aggregation nodes is reduced by one. After
traversal, we can obtain the required number of aggregation
nodes and denote it as N . Finally, we select the top N
as aggregation nodes from the sorted candidate servers and
deploy the XDP-based aggregator on them.

Discussion. Considering the dynamic load on servers, the
management module of XAgg will traverse the load state
of servers after each iteration of aggregation and determine
whether to adjust the aggregation topology. In addition, when
a selected aggregation server encounters a burst load during
an iteration of aggregation and cannot continue to undertake
gradient aggregation. The management module will remove
this server from the aggregation topology, and its child nodes
will directly point to its parent node. Then, these child nodes
will resend the entire gradient to the new parent node.

VI. EVALUATION

In this section, we first give the metrics, benchmarks and
testbed setups for performance evaluation of XAgg. Then,
we conduct microbenchmark experiments to measure the per-
formance advantages of XDP-based aggregation in terms of
throughput, CPU usage and latency. Finally, we evaluate the
efficiency of gradient aggregation of XAgg in heterogeneous
scenarios compared to other benchmarks on the testbed.

A. Experimental Settings

Performance Metrics. We give an outline of the following
two sets of performance metrics.

Fig. 7. Throughput vs. No. of gradients in a packet.

Fig. 8. Throughput vs. No. of CPU cores.

1) To illustrate the advantage of XDP-based aggregation,
we adopt the following metrics in microbenchmark:
(i) the packet processing rate (Mpps); (ii) the gradient
throughput (Gbps); (iii) the CPU usage (%); (iv) the
one-hop latency (µs); and (v) the packet loss rate (‰).
We count the number of gradient packets and record the
transmission time to calculate the packet processing rate
and gradient throughput. On the one hand, we measure
the impact of different gradient payload sizes in a
packet on the metrics (i) and (ii), so as to determine
the optimal gradient packet size. On the other hand,
we adopt metrics (ii) and (iii) to show the linear scaling
performance and on-demand CPU resources occupation
of XDP-based aggregation.
We measure the round-trip delay of worker-server-PS
and worker-PS separately, and then calculate their differ-
ence to derive the one-hop processing latency, i.e., metric
(iv). We count the number of retransmitted gradient
packets to obtain the packet loss rate, that is, metric
(v).

2) To evaluate the aggregation acceleration performance of
XAgg in heterogeneous testbed scenarios, we measure
(i) the per-epoch communication time (s); (ii) the per-
epoch time (s); (iii) the peak throughput (Gbps) of
workers and (iv) the training throughput (images/s) of
workers; and (v) the test accuracy (%).
We measure the per-epoch communication time from
the worker sending its local gradients to receiving the
aggregated gradients in each epoch. We record the time
between two consecutive epochs as the per-epoch time.
Moreover, we use iftop [44] to monitor the egress
traffic of workers, and obtain the peak throughput of
workers. Then, we can calculate the training throughput
of workers based on metric (i), i.e., the number of images
trained per second. Finally, we record the test accuracy
of XAgg over time.

Benchmarks. We compare XAgg with the other four bench-
marks. The first one is similar to XAgg, called TCP-Agg,
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Fig. 9. CPU usage vs. Throughput.

which also uses idle servers for gradient pre-aggregation. The
only difference is that this scheme adopts native kernel TCP
stack for gradient transmission. The second benchmark is
an in-network aggregation framework called SwitchML [13].
It leverages the programmable switches to aggregate the model
gradients from multiple workers, thereby reducing the volume
of exchanged data and eliminating the bandwidth bottleneck
of the PS. To control the variables and ensure the comparison
fairness, the SwitchML worker adopts the raw socket to send
SwitchML format packets, and also utilizes XDP to receive
aggregated gradients from P4 switches, which is similar to the
implementation of XAgg. The third one is the most popular
All-Reduce architecture NVIDIA Collective Communications
Library (NCCL) [45]. The last one is BytePS [21], which is
a PS-based acceleration framework.

B. Microbenchmark

We evaluate the baseline performance of XAgg, TCP-Agg,
and DPDK to demonstrate that XDP has higher performance
compared with native TCP and lower CPU usage compared
with DPDK. Thus providing a basis for the technology
selection of aggregation data plane.

The Optimal Gradient Packet Size. We first measure
the impact of different gradient sizes in a packet on the
packet processing rate of XAgg, DPDK and TCP-Agg with
a single CPU core. Specifically, we use three machines for
this experiment, including a worker, an server, and a PS. The
number of RX queues on the server is set to 1, so that the
aggregator will use one CPU core. We send gradient traffic
from the worker to the server, where each packet payload
contains 32 to 320 gradient values, i.e., 128-1280 bytes. After
receiving the gradient packets, the XDP aggregator on the
server will perform the aggregation operation and forward
the aggregated gradients to the PS. We count the number of
received packets on the PS to calculate the packet processing
rate of the XDP aggregator.

As shown in Fig. 6, the processing capacity of the aggre-
gator decreases as the gradient payload size increases. For
example, XAgg processes 4.19M packets per second with the
payload size of 32. When the gradient payload size scales to
320, the packet processing rate reduces to 1.11Mpps. That is
because the aggregator needs to traverse the gradient array
of each packet. A larger gradient payload size will increase
the processing time of a single packet, thereby reducing the
packet processing rate. Furthermore, we observe 2.77-3.54×
performance improvement of XDP compared to TCP under
the same gradient size. It means that XDP can effectively

Fig. 10. One-Hop latency vs. Throughput.

Fig. 11. Packet loss rate vs. Throughput.

improve the throughput of gradient aggregation and forward-
ing by pre-stack packet processing. Meanwhile, the single core
processing performance of DPDK is slightly higher than that
of XDP by 10.3% -23.1%. This is because DPDK adopts
busy polling to pull packets from NIC to the user space for
processing [30].

Although the aggregator achieves a higher processing rate
with a smaller packet size, this increases the processing
overhead of the packet header and reduces the goodput.
Therefore, XAgg may not achieve the optimal throughput
when a packet carries a few gradient values. We need to further
measure the gradient throughput under different packet sizes
to determine the optimal gradient payload size. By Fig. 7,
when a packet carries 256 gradient values, the single-core
throughput of XAgg will reach a maximum of 13.03 Gbps.
Meanwhile, TCP-Agg’s throughput of a single core reaches
4.12 Gbps with 320-element gradient payload. As a result,
we select 256-element gradient payload in XAgg and conduct
subsequent experiments.

Linear Scaling Performance. Fig. 8 shows that the
throughput of XAgg will scale linearly with the increas-
ing number of CPU cores. Specifically, given a packet of
256 gradient values, the aggregate bandwidth of XAgg can
reach 13 Gbps. When scaling to 10 cores, XAgg will hit
the NIC’s bandwidth limit of the machine with throughput at
99.5 Gbps. DPDK performs slightly better, so its single core
bandwidth is 14.9 Gbps, and it can reach 100 Gbps band-
width with 9 CPU cores. Meanwhile, although the processing
capacity of TCP-Agg also increases with the number of CPU
cores, its overall performance lags significantly behind that of
XAgg. For example, the throughput of XAgg and TCP-Agg
with 10 CPU cores is 99.5 Gbps and 29.8 Gbps respectively,
and the throughput of XAgg is 3.3× higher than that of TCP-
Agg. From the above results, we can conclude that XDP can
enable servers to utilize 10 CPU cores for gradient aggregation
at a line rate of 100 Gbps, which significantly improves the
in-network aggregation performance of XAgg.
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CPU Usage. Fig. 9 illustrates the CPU usage with band-
width growth for the three schemes. We use the mpstat tool
to measure the CPU usage when performing gradient aggre-
gation on a single core. Since DPDK adopts busy polling to
process the packets, its CPU usage is always pegged at 100%.
In contrast, both XDP and TCP adopt soft interrupt processing,
which can smoothly scale CPU usage with the increasing load
[29]. Although the performance of XDP is slightly weaker
than that of DPDK, its on-demand CPU resources occupation
is obviously more suitable for deployment on idle servers.

One-Hop Latency. We then analyze the impact of deploy-
ing XDP-based aggregators on one-hop latency on servers.
Based on the previous results, we allocate 10 CPU cores
to the aggregator. To obtain the processing latency of one
hop in XAgg, we measure the round-trip delay of worker-
server-PS and worker-PS separately, and then calculate their
difference. In Fig. 10, the average one-hop latency increases
with throughput, as a larger volume of traffic will bring
higher queuing delay at the switches and NICs. For exam-
ple, the one-hop latency of XAgg at 10 Gbps throughput
is 149.5µs, and this latency increases by 40% to 209.3µs
at 100 Gbps. Meanwhile, we observe that XAgg reduces
the one-hop latency by 24%-39% compared with TCP-Agg,
which means that XAgg can effectively accelerate gradient
aggregation based on TCP protocol stack. The one-hop latency
of DPDK is 6% −37% lower than that of XAgg, because the
busy polling of DPDK outperforms the soft interrupt of XDP
in terms of latency.

Packet Loss Rate. We further calculate the packet loss rate
of three schemes under different throughputs, which aims to
prove that XDP has better reliability and aggregation perfor-
mance than TCP-based aggregation. For XAgg and DPDK,
we do not enable its reliable transmission function. In addition,
considering the reliable transmission of TCP protocol, we take
the timeout retransmission ratio of the worker as the packet
loss rate of TCP-Agg. As shown in Fig. 11, the packet loss
rate of XAgg is always lower than that of TCP-Agg. For
example, the packet loss rate of TCP at 100Gbps is 1.5‰,
while the packet loss rate of XDP is only 0.261‰, which
is 87% lower than that of TCP. Moreover, the packet loss
rate will increase slightly only when the gradient throughput
approaches or reaches the bandwidth limit of NIC. Packet loss
comes from the overflow of the NIC RX buffer. When massive
packets arrive, the program cannot timely process the received
packets, resulting in Rx buffer overflow and packet loss.

We conclude from the above experimental results that XAgg
has higher performance compared with TCP-Agg and lower
resource usage compared with DPDK. Thus, we choose XDP
as the data plane technology for gradient aggregation.

C. Testbed Evaluation

Testbed Setups. We use 10 servers to build the XAgg
testbed, including 7 workers, 2 idle servers and 1 PS. Specif-
ically, each server is equipped with 44 cores of Intel Xeon
6152 processor, 128 GB memery. All the servers run Ubuntu
18.04 with Linux kernel 5.4. Each worker runs PyTorch [37]
for local model training. The topology of the XAgg testbed
is shown in Fig. 12, where the gradients of W1 − W3 and

Fig. 12. The testbed is configured with 7 workers, 2 idle servers and 1 PS.
The gradients of W1−W3 and W4−W6 are aggregated on servers S1 and
S2, respectively. The gradients of S1, S2 and W7 are aggregated on PS.
Moreover, W1 −W3 are equipped with RTX 3080 GPU and 40 Gbps NIC,
while W4 −W7 are equipped with RTX 3090 GPU and 100 Gbps NIC.

Fig. 13. Per-Epoch communication time under different models.

Fig. 14. Per-epoch time under different models.

W4 −W6 are aggregated on servers S1 and S2, respectively,
while the gradients of S1, S2, and W7 are aggregated on PS.
In addition, the computation and bandwidth of the 7 workers
are heterogeneous. W1 − W3 are equipped with NVIDIA
RTX 3080 GPU and Intel XL710 40G NIC, while W4 −W7

are equipped with NVIDIA RTX 3090 GPU and Mellanox
ConnectX-6 100G NIC.

When testing the comparison benchmarks, TCP-Agg and
XAgg share the same topology. In the BytePS framework,
7 workers are directly connected to PS. The 7 workers
of SwitchML are directly connected to a Wedge100BF-32x
programmable switch with an Intel Tofino chip [23], which is
then connected to PS.

To evaluate the gradient aggregation acceleration perfor-
mance of XAgg in heterogeneous scenarios, we choose four
CNN models and one Transformer model with different sizes.
The CNN models include Inception-V3 [46], ResNet50 [1],
AlexNet [47] and VGG16 [48]. We train these models on
Cifar-10 dataset [49], which contains 60000 images, 50000 of
them for training and 10000 of them for testing, labeled in
10 classes. The Transformer model is the BERT-BiLSTM-
CRF model [50], [51] for named entity recognition (NER)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 05,2024 at 04:28:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: XAgg: ACCELERATING HETEROGENEOUS DISTRIBUTED TRAINING THROUGH XDP 11

Fig. 15. Peak throughput of workers under different models.

Fig. 16. Test accuracy over time under inception-V3.

Fig. 17. Test accuracy over time under ResNet50.

Fig. 18. Test accuracy over time under AlexNet.

Fig. 19. Test accuracy over time under VGG16.

task [52]. We adopt CLUENER-2020 dataset [53] to train this
model, which contains 12091 sentences, 10748 of them for
training and 1343 of them for testing. The sizes of the above
five models are 25MB, 97MB, 233MB, 528MB and 542MB
respectively. XAgg can completely store the above models
on host, but the limited on-chip memory of programmable

Fig. 20. Test accuracy over time under BERT-LSTM.

switches will seriously affect the aggregation of large models.
Moreover, we set the training epoch number of CNN models
to 200 and the Transformer model to 30.

Per-Epoch Communication Time. In this set of eval-
uations, we focus on the acceleration effect of XAgg on
per-epoch training (Figs. 13-14). We define the communication
time as the period from the beginning of workers sending the
gradient to receiving the aggregated gradient. Fig. 13 shows
the per-epoch communication time of different schemes when
training the four DNN models. For ResNet50, the communica-
tion time of XAgg, TCP-Agg, SwitchML, NCCL and BytePS
is 0.31s, 0.61s, 1.66s, 1.03s and 0.93s, respectively. The per-
epoch communication time of XAgg is reduced by 49%, 82%,
70% and 66% compared to that of TCP-Agg, SwitchML,
NCCL and BytePS, respectively. The reason is that XAgg
uses XDP to achieve efficient gradient aggregation, avoid the
protocol stack overhead, and eliminate the communication
bottleneck at the PS. In contrast, SwitchML will block for
a period of time due to the heterogeneous computation and
bandwidth of workers before reaching the peak aggregation
performance.

Per-Epoch Time. We further evaluate the impact of the
reduction in communication time on the total training time
of one epoch. We record the per-epoch time, which includes
the local training time and communication time of work-
ers in one epoch. Although our scheme does not optimize
the local training time, the acceleration of gradient aggre-
gation can effectively speed up of each epoch of training.
We observe from Fig. 14 that the per-epoch training time
of XAgg is always the lowest compared with that of other
four benchmarks. In addition, XAgg has a more signifi-
cant acceleration effect on communication-intensive large-size
models. For example, compared to SwitchML, XAgg can
reduce the per-epoch time by 23%, 26% and 34% under
AlexNet, ResNet50 and VGG16 models, respectively. Because
the BERT-LSTM model has a relatively low proportion of
communication time (25%), the effect of XAgg in optimiz-
ing its communication time is not significant. However, the
per-epoch training time of XAgg is still lower compared with
that of other four benchmarks. For example, XAgg can still
reduce the per-epoch time of BERT-LSTM model by 16%
compared to SwitchML.

Peak Gradient Throughput of Workers. We use iftop
[44] to monitor the egress traffic of workers and record
the peak gradient throughput. As shown in Fig. 15, XAgg
always achieves the highest gradient throughput compared to
other schemes when training these five models. For example,
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when training ResNet50, the workers’ maximum through-
put of XAgg, TCP-Agg, SwitchML, NCCL and BytePS is
45.7 Gbps, 16.6 Gbps, 11.6 Gbps, 14.6 Gbps and 16 Gbps.
It means that XAgg can increase the gradient throughput
by 2.8×, 3.9×, 3.1× and 2.9× compared with the above
schemes, respectively. The reason is that XAgg uses idle
resources on servers for gradient pre-aggregation, and the
abundant memory prevents the gradient sending of workers
from blocking in heterogeneous scenarios. In addition, the rate
negotiation mechanism of XAgg can effectively improve the
bandwidth usage of workers. On the contrary, the peak gra-
dient throughput of workers in SwitchML is only 11.6 Gbps,
which is obviously far lower than expected. This is because the
workers in SwitchML will not send subsequent gradients until
they receive the previous aggregated results, which severely
degrades the gradient sending rate.

Test Accuracy over Time. In this set of evaluations,
we evaluate the test accuracy of XAgg over time under these
five DNN models, as shown in Figs. 16-20. The experimental
results show that XAgg takes the least time to complete
training and achieves a similar test accuracy compared with
other alternatives. We observe from Fig. 19 that when training
VGG16, XAgg first completes 200 epochs training in 1116s
with an accuracy of 0.884, while the total training time for
TCP-Agg, SwitchML, NCCL and BytePS is 1334s, 1688s,
1622s and 1530s, respectively. From the above experimental
data, we can calculate that XAgg can speed up the distributed
model training by 1.17×, 1.34×, 1.31× and 1.27× compared
with TCP-Agg, SwitchML, NCCL and BytePS. In addition,
XAgg completes 30 epochs training of BERT model training
within 435s and achieved an accuracy of 0.924, which reduced
the training time by 8%, 16%, 15% and 14% compared to other
four benchmarks, respectively. As a result, we conclude that by
utilizing XDP-based aggregators, XAgg accelerates gradient
aggregation and eliminates the communication bottleneck in
heterogeneous scenarios without affecting the training accu-
racy.

Evaluation of Delays. onsidering that the aggregation tree
topology may occasionally change during training, we evaluate
the impact of the aggregator deployment delay on training
efficiency. XDP-based aggregators depend on specific kernel
versions. Generally, servers in the data center are equipped
with consistent kernel versions, so XAgg’s aggregator can be
compiled once and run everywhere (CO-RE) [54]. In cases
of different kernel versions, aggregators need to be compiled
on each node before deployment. Deployment latency with
and without precompilation is 0.34s and 0.68s, respectively.
We can conclude that aggregator deployment will not be a
bottleneck in XAgg.

Moreover, the rate initialization delay of worker, server
and PS is 12ms, 5ms and 2ms, respectively. The rate update
delay of worker and server is 2ms and 1ms respectively.
We can conclude that the delay of rate negotiation is negligible
compared to the training/gradient transmission time.

We then record the real-time transmission rate of the worker
based on XAgg and TCP-Agg when the bandwidth decreases.
Specifically, we set the initial transmission rate to 60 Gbps and
then reduce the receiving bandwidth of the aggregation node

Fig. 21. Sending rate over time under bandwidth decrease.

to 20 Gbps. We record the sending rate of workers every 10ms,
as shown in Fig. 21. XAgg adopts the group-based acknowl-
edgment mechanism, which can achieve the same bandwidth
adjustment effect as TCP, but the number of acknowledgement
packets is much smaller than that of TCP. In addition, when
the bandwidth decreases, TCP will reset cwnd to 1 and
re-execute the Slow-Start algorithm, and its bandwidth will
sharply decrease to 0. The bandwidth adjustment of XAgg is
smoother than that of TCP.

VII. RELATED WORK

There are two typical paradigms for scaling out distributed
model training: model parallelism and data parallelism [55].
Model parallelism refers to dividing a large model into mul-
tiple layers and allocating these layers to several workers.
Each worker calculates the gradient of the assigned layer(s)
[56]. In this paper, we focus on accelerating data parallelism
model training, which splits the whole dataset into multiple
workers [57]. Specifically, in each iteration, the workers train
the model with their own dataset partitions and generate local
gradients. Subsequently, workers communicate with each other
and exchange local model gradients to obtain global gradients,
also called gradient aggregation.

Typical Gradient Aggregation Framework. Parameter
Server (PS) [5] and AllReduce (AR) [58] are two widely used
gradient aggregation frameworks for data parallelism training.
PS usually contains two kinds of nodes: workers and parameter
servers (PSs). Specifically, in each iteration, the workers first
train the model and transmit their local gradients to the PS(s)
for aggregation. After that, the PS(s) will send the aggregated
gradient results back to each worker. Obviously, as the model
size and the number of workers increase, the bandwidth of
the centralized PS(s) will become the performance bottleneck
of distributed model training. AR is proposed to alleviate the
communication bottleneck of the PS, which adopts collective
communication for gradient aggregation. We take the widely
used Ring-AR as an example, where all nodes are workers,
and organized in a ring topology [59]. Each worker sends a
gradient partition to its successor and receives another parti-
tion from its predecessor. Although AR can achieve optimal
bandwidth utilization in homogeneous scenarios, but it suffers
from poor robustness, especially in heterogeneous scenarios.
The speed decrease or failure of a node in the ring will
reduce the throughput of the whole ring. Optimizing Ring
AllReduce in heterogeneous scenarios requires designing new
communication mechanisms, such as constructing multiple
rings [60], [61].
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Communication Optimization. Prior works attempt to
speed up the communication process for distributed model
training through two approaches: gradient compression and
communication scheduling. Many studies [12], [14], [15],
[16] have proposed compressing gradients to reduce traffic
while guaranteeing training convergence. There are two main
compression techniques: sparsification [12], [14] and quanti-
zation [15]. For example, OmniReduce [12] leverages gradient
sparsity and only sends non-zero data blocks to minimize
traffic transfer. However, gradient compression schemes suffer
from a decrease of training accuracy [13], [62]. Besides
reducing gradient transfer, many works try to optimize com-
munication scheduling, including designing high-performance
traffic schedulers [17], [18], [19], and building training and
communication pipelines [20], [21]. For instance, Geryon [19]
determines the scheduling scheme for gradient flows according
to their priorities to maximize the utilization of bandwidth
resources. BytePS [21] transmits gradients in layers, increasing
the overlap between workers training and network trans-
mission through fine-grained communication. However, these
efforts cannot reduce the traffic volume while performing gra-
dient aggregation, and may still encounter the communication
bottleneck on links.

In-network Aggregation. The idea of in-network aggrega-
tion was first explored in the field of wireless networks [63]
and big data [64]. For example, work [63] aggregates informa-
tion between the paths from sensor nodes towards base stations
to reduce data transmission in wireless sensor networks and
prolong network lifetime. NetAgg [64] uses switch-attached
middleboxes to aggregate data from MapReduce and search
engines. As communication becomes a bottleneck in dis-
tributed model training, many efforts [13], [22], [65] have
attempted to implement in-network gradient aggregation to
accelerate distributed training with programmable hardwares.
SwitchML [13] and ATP [22] offload gradient aggregation
logic to Tofino-based programmable switches to alleviate the
communication bottlenecks of the PS. However, the limited
on-chip memory of programmable switches is difficult to
adapt to the heterogeneous distributed training system, result-
ing in low aggregation performance and even degradation
to the PS framework. iSwitch [65] leverages FPGA-based
programmable switches to aggregate gradients for reinforce-
ment learning. Although FPGAs have larger on-chip memory,
it operates at much lower bandwidth (4×10 Gbps).

On-host Network Acceleration Technology. Although
the programmable switch provides high bandwidth and
high-performance processing/forwarding, its limited on-chip
memory cannot store the complete model gradients. Therefore,
the programmable switch requires high synchronization of
gradient transmission, making it difficult to adapt to het-
erogeneous distributed training systems. In contrast, on-host
software network acceleration technologies provide sufficient
memory and flexible development and deployment capabil-
ities, including DPDK [35], XDP [29], [30], Netmap [66],
etc. DPDK adopts the kernel bypass approach to realize a
high-performance and low-latency packet processing plane in
user space [35]. However, DPDK is not suitable to deploy on
servers for in-network gradient aggregation. First, DPDK com-

pletely takes over the network device from the kernel, which
leads to potential security risks, as well as affects the process-
ing of regular traffic [30]. Second, the busy polling mechanism
of DPDK needs to occupy dedicated CPU core(s) [30], which
will bring unnecessary waste of resources to servers. To this
end, we seek a high-performance and low-overhead on-host
network acceleration technology to adapt to the gradient
aggregation with idle resources on servers.

eBPF/XDP and Related Applications. Extended Berkeley
Packet Filter (eBPF) is a highly flexible and efficient virtual
machine-like construct inside the Linux kernel [67]. Devel-
opers can inject custom code into the kernel through various
hook points in a safe manner. eXpress Data Path (XDP) is
one of the most important eBPF hooks for high-performance
data path that can perform packet processing before the kernel
network stack [29], [30]. XAgg utilizes XDP to implement
gradient aggregation and forwarding on servers because of its
linear scaling performance, low processing latency, on-demand
requests for CPU resources, and allowing regular traffic to
be processed normally by the network stack. In addition to
networking, eBPF is currently widely used for security [68],
monitoring [69] and storage [70], [71]. For example, BMC
[70] constructs a in-memory key-value store accelerator, which
adopts XDP for pre-stack requests processing and uses eBPF
maps as in-kernel cache.

VIII. DISCUSSION

XAgg Applicable Scenarios. Considering some dedicated
GPU clusters may not have many idle CPU and memory
resources. For example, Microsoft uses dedicated GPU cluster
with full CPU/memory saturation to train large-scale GPT
models. XAgg is more suitable for public cloud scenarios.
Specifically, cloud providers can implement XAgg as an
acceleration service for tenants who cannot afford large-scale
dedicated GPU clusters. Tenants can rent a small number of
PS nodes and use XAgg’s accelerated services on demand to
speed up training while saving costs.

Synchronous and Asynchronous Update. Synchronous
gradient updates can solve the problem of straggler workers in
heterogeneous scenarios to some extent [72], [73]. However,
asynchronous gradient update suffers from the stale gradients
problem that degrade convergence, resulting in an almost
no improvement in time to convergence [74]. In this paper,
considering that P4-based in-network aggregation cannot adapt
to heterogeneous scenarios with synchronous aggregation,
XAgg is proposed to optimize synchronous aggregation under
computation and bandwidth heterogeneity.

Hyperparameter optimization. Hyperparametric optimiza-
tion, such as adaptive batch size, can enable workers to
start sending gradients almost simultaneously, which is ben-
eficial for heterogeneous computation scenarios. However,
this method is difficult to deal with bandwidth heterogeneity
effectively. For example, in the INA scenario, the aggre-
gation rate of the programmable switch is still limited to
the slowest bandwidth, even if all workers start sending
gradients simultaneously with adaptive batch size. Our paper
comprehensively consider the computation and bandwidth
heterogeneity. Considering that our work can optimize the
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bandwidth heterogeneity and adaptive batch size can optimize
the computational power heterogeneous scenario, XAgg can
work together with adaptive batch size.

IX. CONCLUSION

This paper focuses on achieving high-performance and
stable gradient aggregation under heterogeneous distributed
model training. We propose XAgg, which deploys the
XDP-based aggregator on servers in data centers to accel-
erate heterogeneous gradient aggregation. Specifically, the
abundant idle memory on servers can cache the entire gra-
dient and wait for stragglers to catch up, so as to deal
with computation/bandwidth heterogeneity. Moreover, XDP
can provide high-performance and low-latency gradient pre-
aggregation. We conduct microbenchmark and testbed with
real-world DNN models and datasets. Experimental results
show that XAgg can achieve gradient aggregation and forward-
ing at 100 Gbps with 10 CPU cores, and its performance is
3.3× higher than that of TCP-based aggregation. In addition,
XAgg reduces communication time by 49%-82% compared
with state-of-the-art solutions.
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