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Abstract— Cloud infrastructure has gradually displayed a ten-
dency of geographical distribution in order to provide anywhere,
anytime connectivity to tenants all over the world. The tenant
task placement in geo-distributed clouds comes with three critical
and coupled factors: regional diversity in electricity prices, access
delay for tenants, and traffic demand among tasks. However,
existing works disregard either the regional difference in electric-
ity prices or the tenant requirements in geo-distributed clouds,
resulting in increased operating costs or low user QoS. To bridge
the gap, we design a cost optimization framework for tenant task
placement in geo-distributed clouds, called TanGo. However, it is
non-trivial to achieve an optimization framework while meeting
all the tenant requirements. To this end, we first formulate
the electricity cost minimization for task placement problem as
a constrained mixed-integer non-linear programming problem.
We then propose a near-optimal algorithm with a tight approx-
imation ratio (1 − 1/e) using an effective submodular-based
method. Results of in-depth simulations based on real-world
datasets show the effectiveness of our algorithm as well as the
overall 10%-30% reduction in electricity expenses compared to
commonly-adopted alternatives.

Index Terms— Geo-distributed cloud, task placement, cost
effectiveness, multi region, regionless.

I. INTRODUCTION

DEPLOYING enterprise user applications (e.g., Net-
flix [2], Disney+ [3]) to a shared and multi-region cloud

infrastructure has become a new norm to meet application
requirements including latency (e.g., 100-150 ms for video
streaming) and data sovereignty regulation (e.g., European
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Fig. 1. An example of global tenants placing tasks based on a geographically
distributed cloud.

Union GDPR [4]). This geo-distributed deployment model
requires cloud providers (e.g., AWS [5], Microsoft Azure [6],
and Google Cloud [7]) to build a multi-region and massive
infrastructure in a global scale, setting up tens of data centers
across the continents, connecting them in a global backbone
network with purpose-built high bandwidth fibers or rent
bandwidth from ISPs. Since cloud applications are mainly
composed of a number of tasks, this paper focuses on task
placement in a geo-distributed cloud. As illustrated in Fig. 1,
cloud provider’s data centers are spread to multiple regions,
offering global coverage and geographical selections to cloud
users, aka tenants, for task placement.

Building hyper-scale cloud data centers near a populated
area is neither eco-friendly nor economy efficient due to
wasted energy during electricity transmission (e.g., low-cost
power supply from the US Midwest to the East Coast, or from
China West to China East). The electricity consumed by
clouds, correlated to the surging number of servers and the
intensive workloads hosted on each server, has been rising in
a rapid pace and accounting for 60%-70% of overall operating
costs [8]. Therefore, existing cloud deployment model is far
from ideal, calling for an innovative set of design on a more
cost-effective and eco-friendly cloud deployment. As an effort
towards this ambitious goal, our paper aims to answer a
meaningful yet unexplored question: Is it possible to schedule
and place tenant tasks in a cross-region manner so that overall
electricity cost is reduced significantly while meeting desired
tenant/application requirements?

Although implicating a positive impact on our environment,
it is a non-trivial mission to achieve efficient task placement in
a multi-region multi-tenant cloud due to three coupled factors,
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TABLE I
COMPARISON OF ADVANTAGES AND DISADVANTAGES OF EXISTING WORKS

namely, regional diversity in electricity prices, access delay for
tenants, and traffic demand among tasks.
• Regional diversity in electricity prices: Relying on the

source of power (e.g., hydroelectric, wind, or natural gas)
and transmission distance from power plants, the unit
price of electricity may vary significantly for data centers
located in distinct regions. For example, the annual aver-
age day-ahead on peak pricing is $32.57/MWh in the US
Northwest compared to $62.71/MWh in New York [21].

• Access delay for tenants refers to round-trip access
latency between clients and tenant applications/services
deployed in the cloud. The desired latency is determined
by types of tenant tasks (e.g., time-sensitive versus time-
insensitive), and the actual latency varies substantially
based on the geographic distance between clients and
cloud regions [22], [23], [24].

• Traffic demand among tasks refers to the required
delay/bandwidth among multiple tasks of the same tenant.
The desired delay/bandwidth also depends on the type
of tenant tasks, e.g., new computing paradigms like
MapReduce [25] and distributed machine learning [26]
require high bandwidth among tasks. If deployed in
distinct locations (e.g., one in the US East and the other in
the US South), a high volume of traffic among tasks may
contradict with the limited bandwidth capacity among
data centers [16].

Given diversities of tenant demands and regional electricity
prices, it requires a fresh look from the community to seek
for a practical, efficient and all-in-one task placement solu-
tion. To our best knowledge, existing works on tenant task
placement often disregard the regional difference of clouds
or the tenant requirements for tasks [13], [14], [15], [16],
[17], [18], [19], [20], resulting in increased operating costs or
low user quality-of-service. For example, some task placement
solutions have been proposed to minimize the total electricity
cost by leveraging the electricity price difference among
multiple regions [18], [19], [20]. However, these works ignore
various traffic demands between tasks. When an application
imposes a heavy requirement on inter-task communication
(e.g., distributed training), it is preferred to co-locate tasks
in the same region, otherwise task placement can be more
flexible. Overlooking the traffic demands may result in a
higher operating cost.

To conquer these challenges, this paper presents an opti-
mization framework, named TanGo, wherein tenants can
specify their various demands over tasks and cloud providers

can place tenant tasks in a cost-effective manner. The core of
TanGo is a near-optimal task placement algorithm that could
minimize the total cost while satisfying all the demands and
constraints. In summary, we make the following contributions:

1) We propose TanGo, a cost optimization framework that
includes a mathematical model of the geo-distributed
task placement problem. TanGo minimizes the overall
electricity cost while meeting all diverse demands.

2) We formulate the task placement problem as a mixed-
integer non-linear optimization problem and give a
submodular-based solution. We prove that our algorithm
is close to optimal and bounded by a tight approximation
factor of (1 − 1/e) and then extend to scenarios with
duplicated task placement.

3) We conduct extensive experiments based on real-world
regional topology, electricity pricing map, and ten-
ant datasets including Alibaba Cluster Trace [27] and
Google Cluster Trace [28]. The results show that TanGo
can reduce the electricity cost by up to 10%-30%
compared with existing solutions.

The rest of this paper is organized as follows. Section II
discusses the limitations of the related studies and explains our
motivation. Section III gives the formulation of the electricity
cost minimization for task placement problem and proposes a
polynomial-time submodular-based algorithm. In Section IV,
the effectiveness of the proposed algorithm is evaluated using
two different task datasets and real-world electricity prices.
Section V gives some related works for this paper, and
Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we first discuss existing efforts on reducing
costs in a geo-distributed cloud and then show their limitations
through a motivation example. Finally, we give the overview
and workflow of TanGo.

A. Current Cost-Effective Solutions and Limitations

We summarize the advantages and disadvantages of existing
works on reducing the electricity consumption/cost as in
Table I. According to our research, there are primarily three
categories of cost-effective options as follows.

Intra-region: In a single region, some studies con-
sider reducing the resource consumption by scheduling
traffic (e.g., TrafficShaper [10]) or workload (e.g., Work-
loadcompactor [11]). Some other studies consider adopting
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eco-friendly energies [9], [12] to reduce the overall cost inside
a data center or a region. However, in practice, with the
desire for low-cost computing and always-on connectivity of
tenants from all over the world, cloud providers often cannot
restrict the task distribution on their servers to a particular data
center due to computing power constraints and access delay
demands.

Inter-region power-aware: Some previous works [13],
[14], [15], [16], [17] make efforts to reduce power consump-
tion through multi-region task placement in a geo-distributed
cloud while offering low access delay to end users [14] or
reducing inter-DC traffic volume [16], [17]. However, the
objective of cloud providers like Azure [6], AWS [5], and
others is to lower overall operating cost, which is based on
not only how much power they use, but also the price of the
power source, which varies greatly in different regions. These
works often ignore the regional differences in resource prices,
which may result in increased operating costs.

Inter-region price-aware: Motivated by the geographical
diversity in electricity prices, some works [18], [19], [20]
focus on the problem of reducing the electricity cost of data
centers by redirecting user requests to different data centers
with regional electricity price diversity consideration. For
example, the authors in [19] study the task placement problem
over geo-distributed data centers while guaranteeing the user
quality-of-service (i.e., access delay). However, most of these
price-aware works consider tasks to be run independently and
fail to capture the traffic relation between tasks, thus are
not appropriate for the current large-scale distributed cloud
system.

In practice, there are mainly two strategies of task placement
in current public clouds [29]. One is Lowest-Delay-First
(LDF), where tenants select the region with the lowest access
delay to place tasks. The other one is Lowest-Cost-First (LCF)
where cloud providers choose the region with the lowest elec-
tricity price that meets tenants’ access delay demand. For both
strategies, tasks from a tenant tend to be placed in the same
region so as to meet various traffic demands between tasks.
Furthermore, in the evaluation section, we show the superiority
of our approach compared with these two strategies even
when we modified the two strategies to allow for cross-region
placement while considering the traffic demands.

B. A Motivation Example

Fig. 2 shows a simple scenario of task placement in a geo-
distributed cloud. In this scenario, there are four regions (A,
B, C, D) and two tenants (T1 and T2). Tenant T1 needs to
place two tasks (M11 and M12) in these regions while tenant
T2 has two other tasks (M21 and M22) to be placed. Fig. 2
also shows the access delay demand for each task and traffic
demand among tasks required by each tenant, as well as the
delay between tenants and regions. For instance, the access
delay between region A and tenants T1, T2 is 60ms, 40ms,
respectively, and the access delay demand of tenant T1 for
tasks M11, M12 is 50ms, 40ms, respectively. Furthermore,
we assume that the electricity consumption of each task is
1MWh for simplicity, and each region can accommodate up

Fig. 2. An example of three strategies for placing tenant tasks in different
regions. Top left: the access delay demand for each task and the delay demand
among tasks. Top right: the delay between tenants and regions, and the delay
among regions. Bottom: task placement decisions of each strategy and the
overall cost.

to two tasks. The electricity price in regions A, B, C, and D
is 30, 50, 40, and 60 ($/MWh), respectively, to distinguish the
regional difference in electricity price. We show the placement
decisions of LCF and LDF along with our solutions as follows.
• Lowest-Delay-First Strategy: If we follow this strategy,

then two tasks of tenant T1 should be placed in region
B since it has the lowest access delay (30ms) to ten-
ant T1. The same is true for tenant T2 to place tasks
M21 and M22 in region D for the lowest access delay
(20ms). As a result, the total cost of these tasks is
$220 ($50× 2 + $60× 2).

• Lowest-Cost-First Strategy: Since tenant T1 requires a
40ms access delay for task M12, it places tasks M11 and
M12 in region C with the lowest price. As for tenant T2,
it has to select region D due to the access delay demand
for task M22. Then the total cost is $200 for this strategy.

• TanGo: If we place task M11 in region A, M12 and M21

in region B, M22 in region C, the total cost becomes $170
while satisfying all the demands.

This example demonstrates that under the premise of meet-
ing tenant requirements, distributing tasks of a tenant to
different regions can cut more costs than other methods.
In fact, cross-region task placement is becoming a popular
topic. For instance, the East Data West Compute Project
has been launched in China to maximize resource utilization
by transferring the massive data volume generated in China
East to the region in China West with abundant computing
power. Motivated by it, this paper proposes a cost optimization
framework, called TanGo, which aims to reduce the electricity
cost of task placement in geo-distributed clouds while still
satisfying all the tenant requirements.

C. Overview of TanGo

As depicted in Fig. 3, TanGo is composed of two funda-
mental parts: the control plane and the data plane. Specifically,
the control plane consists of two components: the state
collector and the placement optimizer. The state collector
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Fig. 3. Overview and workflow of TanGo. TanGo is mainly composed of
two parts: the control plane and the data plane. Specifically, the control plane
consists of two components: the state collector and the placement optimizer.
The data plane consists of data centers located in different regions.

is responsible for collecting regional state information (e.g.,
regional topology and electricity price). The cloud providers
could utilize the detailed information along with the tenant
requirements to make optimal placement decisions by the
placement optimizer. Moreover, the data plane consists of
data centers located in different regions. TanGo provides
tenants a “One Big Region” abstraction of the data plane,
wherein the tenant can specify their various requirements over
all or a subset of tasks without specifying the placement
locations.

Fig. 2 briefly describes the workflow of TanGo. 1 To
make optimal placement decisions, the state collector first
collects the regional information, including the regional topol-
ogy, current electricity prices and the delay/bandwidth between
any pair of regions. 2 Considering some information may
vary over time, the state collector works on a periodical
basis. For example, in regions with wholesale power markets,
the state collector updates electricity prices hourly or every
15 minutes [30]. 3 Once TanGo obtains tenant inputs, the
placement optimizer outputs the mapping of tasks to regions.

4 Based on the output, TanGo places tasks in the clouds.
We describe how to achieve cost minimization in detail in
Section III.

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

In this section, we give a detailed modeling of the electricity
cost minimization problem for the geo-distributed task place-
ment (CTP). Then we propose an effective submodular-based
algorithm to achieve the near-optimal solutions with a (1−1/e)
approximation guarantee. The important notations are listed in
Table II.

A. Problem Formulation

Network Model. A typical geo-distributed cloud is segre-
gated into different regions from a global standpoint, providing
tenants with geographical selections for task placement.
Specifically, we use R = {k1, . . . , kK} to represent the set

TABLE II
IMPORTANT NOTATIONS

of regions, where K = |R| is the number of regions. The
set of tenants in the cloud is denoted as T ={t1, . . . , t|T |}.
As tenants deploy different kinds of tasks in clouds, we use I
to denote the set of tasks and It = {It

1, . . . , I
t
|It|} to denote

the set of tasks of tenant t.
Inputs and Outputs. As stated in Section II-C, we obtain

inputs from two aspects. 1) First, the cloud provider collects
regional information by state collector periodically. This infor-
mation consists of the electricity price in each region and
the delay/bandwidth among regions. We did not explicitly
model the specific routing and switching mechanisms for
the network inter-connectivity between regions, which have
been extensively explored by previous studies [16], [31], [32].
Instead, in our current setting, we assume that the data centers
are connected via dedicated links that are either self-built or
rented from infrastructure providers, with known bandwidth
and latency constraints. This simplification allowed us to focus
on the optimization of task placement within regions, which
is the main focus of this paper. We use τk,k′ and bk,k′ to
represent the delay and bandwidth between regions k and
k′, respectively. The delay and bandwidth among regions
can be measured by the state-of-the-art techniques [33], [34].
We also use rk to denote the computing power provided by
region k, which can be measured by the number of CPU
cores. 2) Second, each tenant specifies its requirements on
tasks, including the access delay demand and traffic demand
among tasks. We take these requirements as inputs of our
algorithm. Specifically, constant τi,t represents the access
delay demand between tenant t and task It

i . τ t
i,i′ denotes

the delay demand between tasks It
i and It

i′ (e.g., 100 ms for
online conferencing [35]). bt

i,i′ denotes the bandwidth demands
between tasks It

i and It
i′ . The key step of CTP is to determine

in which regions a tenant’s tasks will be placed. We use binary
variable xt

i,k to denote whether the task It
i will be placed in

region k or not.
Constraints. A cost optimization framework for tenant task

placement should satisfy the following constraints:
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1) Task Placement Constraint: Task It
i from tenant t should

be placed in one and only one region. That is,
∑

k xt
i,k =

1,∀It
i ∈ It, t ∈ T .

2) Access Delay Constraint: Since tenants require different
access delays to their tasks, each task can only be placed
in regions close enough to the tenant. It follows xt

i,kτ t
k ≤

τ t
i ,∀It

i ∈ It, t ∈ T , k ∈ R.
3) Traffic Delay Constraint: The communication delay

between any pair of tasks from a tenant should not
exceed the traffic delay demand posed by the tenant.
It means xt

i,kxt
i′,k′τk,k′ ≤ τ t

i,i′ ,∀It
i , I

t
i′ ∈ It, t ∈

T , k, k′ ∈ R.
4) Region Bandwidth Constraint: The total traffic

between any pair of regions (k, k′) should not
exceed the bandwidth capacity constraints bk,k′ , i.e.,∑

t

∑
i,i′ xt

i,kxt
i′,k′bt

i,i′ ≤ bk,k′ ,∀k, k′ ∈ R.
5) Computing Power Constraint: The placement of a task

occupies the computing power of the corresponding
region. The computing power capacity constraint of each
region k should be satisfied. That is,

∑
t

∑
i xt

i,krt
i ≤

rk,∀k ∈ R.
Objective. Our objective is to minimize the total electricity

cost on the premise of meeting tenant requirements, regional
computing power and bandwidth limitations. We give the
following problem formulation:

min
∑

k

Ek

S.t



∑
k

xt
i,k = 1, ∀i, t

xt
i,kτ t

k ≤ τ t
i , ∀i, t, k

xt
i,kxt

i′,k′τk,k′ ≤ τ t
i,i′ , ∀(i, i′), t, (k, k′)∑

t

∑
i,i′

xt
i,kxt

i′,k′bt
i,i′ ≤ bk,k′ ∀(k, k′)∑

t

∑
i

xt
i,krt

i ≤ rk, ∀k

Ek =
∑

i

∑
t

xt
i,krt

ick, ∀k

xt
i,k ∈ {0, 1} ∀i, t, k

(1)

The first set of equations indicates the task placement
constraint. The second to the fifth sets of inequalities
denotes the access delay constraint, traffic delay constraint,
region bandwidth constraint, and computing power constraint,
respectively. The sixth set of equations calculates the total
electricity cost Ek of each region k. Our objective is
to minimize the total electricity cost of all regions, that
is,

∑
k Ek.

Example. To demonstrate the practical implications of delay
and bandwidth constraints in real-world applications, we con-
sider an actual application example. For instance, within one
web application, there are different types of tasks, including
web server tasks, application server tasks, and database tasks.
Communication between these tasks is crucial for ensuring
the smooth functioning of the application. Users accessing the
web application will typically interact with the web server,
which handles incoming requests and provides the necessary
responses. Therefore, this task requires low access latency

Algorithm 1 Searching for Available Region Set of Each Task
1: Step 1: Initialization withe access delay demand
2: Initialize each available set A(It

i ) to the empty set
3: for It

i ∈ I do
4: for k ∈ R do
5: if τ t

k ≤ τ t
i then

6: A(IT
i )← A(IT

i ) + k
7: end if
8: end for
9: end for

10: Step 2: Iterative Update
11: for t ∈ T do
12: Set Flag ← 1
13: while Flag == 1 do
14: Set Flag ← 0
15: for It

i ∈ It do
16: for k ∈ A(It

i ) do
17: if τk,k′ ≥ τ t

i,i′∀k′ ∈ A(It
i′),∃i′ ∈ It − It

i then
18: A(It

i )← A(It
i′)− k

19: Flag ← 1
20: end if
21: end for
22: end for
23: end while
24: Output the available set of each task in It

25: end for

to ensure a seamless user experience. When a user needs to
access specific data, such as retrieving information or submit-
ting forms, the web server communicates with the application
server to process the request. The application server, in turn,
interacts with the database server to retrieve or update the
required data. Consequently, there are bandwidth and delay
constraints between the application server and the database
server to ensure efficient data retrieval and feedback to the
user.

Theorem 1: The CTP problem is NP-hard.
Proof: We prove the NP-hardness by showing that the

Multiple Knapsack Problem (MKP) [36] is a special case of
CTP. In fact, if we dismiss all the delay and bandwidth con-
straints (i.e., access delay constraint, traffic delay constraint,
and the region bandwidth constraint), our CTP problem turns
to be a Multiple Knapsack Problem, where each region k can
be viewed as a knapsack with capacity rk and each task It

i can
be viewed as an item with weight rt

i . In this case, the goal of
this problem is to place tasks in different regions to maximize
the final revenue while satisfying the capacity constraints of all
the regions. Since the Multiple Knapsack Problem is a special
case of our problem, we can conclude that the CTP problem
is NP-hard. □

The optimization formulation of task placement with various
constraints in Eq. (1) results in a complex mixed integer
non-linear programming problem that is computationally hard.
Despite using a state-of-the-art LP solver (e.g., Gurobi [37]),
it still needs an order of hours to solve even for relatively
small scales (e.g., 1000 tasks) [38]. Thus, how to design an
efficient algorithm for CTP is challenging.
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B. Algorithm Design

1) Preliminaries: In general, we need to place the tasks in
K = |R| regions while meeting the tenant requirements, i.e.,
the access delay and traffic demand among tasks. After placing
tasks in K regions, these tasks is certainly divided into K sets,
denoted as {I1, I2, . . . , IK}, where tasks in Ik are placed in
region k. Then the total electricity cost of all tasks is expressed
as

∑
k∈K C(Ik), where C(Ik) =

∑
It

i∈Ik
ckrt

i , ck is the unit
electricity price in region k and rt

i is the computing power
required by task It

i . We know that the total electricity cost of
all tasks will not exceed Cmax =

∑
t∈T

∑
i∈It cmaxrt

i , where
cmax = max

k
ck is the maximum unit electricity price among

these regions. That means the minimization problem in Eq. (1)
can be converted into the following equivalent maximization
problem in Eq. (2), where Cmax −

∑
k∈K C(Ik) means the

total cost reduction.

max Cmax −
∑
k∈K

C(Ik)

S.t



∑
k

xt
i,k = 1, ∀i, t

xt
i,kτ t

k ≤ τ t
i , ∀i, t, k

xt
i,kxt

i′,k′τk,k′ ≤ τ t
i,i′ , ∀(i, i′), t, (k, k′)∑

t

∑
i,i′

xt
i,kxt

i′,k′bt
i,i′ ≤ bk,k′ ∀(k, k′)∑

t

∑
i

xt
i,krt

i ≤ rk, ∀k

xt
i,k ∈ {0, 1} ∀i, t, k

(2)

Obviously, the optimal solution to Eq. (2) is also the optimal
solution to Eq. (1). The problem formulation in Eq. (2) is
similar to a clustering problem, where we need to divide the
task set I into K clusters so as to maximize the electricity
cost reduction of all tasks. However, the selectable regions for
each task are restricted due to the various demands for access
delay with the tenant and traffic with other tasks. We call these
regions as available regions for tasks and give the definition
of the available region set as follows:

Definition 1: Given a task It
i from tenant t, a subset A(It

i )
of R is defined as available region set for task It

i if τ t
k ≤ τ t

i

and τk,k′ ≤ τ t
i,i′ for all k ∈ A(It

i ) and It
i′ in k′ for all k′ ∈

R−A(It
i ).

To start, we use the access delay demand to ascertain
whether the region is available or not. After determining the
placement location for a task, we update the available set
A(It

i ) of each task It
i based on the traffic demand among

tasks iteratively as shown in Alg.1. Since there are at most
|I| tasks for each tenant, the iterative update procedure in
step 2 runs at most |I| times. Thus, the time complexity of
Alg. 1 is O(K|I|2).

Submodular function. Our algorithm is based on efficient
computations of a submodular set function H , which defines
the maximum cost reduction by dividing the tasks into several
sets. Without loss of generality, we consider that the unit price
of the regions is sorted in ascending order. That is, c1 ≤ c2 ≤
· · · ≤ cK . We then give the definition of the submodular set
function H as follows.

Definition 2: Given the set Φ, which contains disjoint sub-
sets of I, the reduction of cost achieved by dividing the tasks
according to Φ is defined as:

H(Φ) = Cmax −
∑

Φn∈Φ

∑
It

i∈Φn

cknrt
i (3)

where kn is the region with the lowest electricity price that
can accommodate all tasks in Φn. It is determined in Alg. 2.

Next, we give the definition of submodularity and prove that
the function H is submodular in Section III-B.3.

Definition 3: (Submodularity [39]): Given a finite set E,
a real-valued function z on the set of subsets of E is called
submodular if z(S ∪ {e}) − z(S) ≤ z(S′ ∪ {e}) − z(S′) for
all S′ ⊆ S ⊆ E and e ∈ E − S.

To maintain the computing power and bandwidth constraints
of the region k, we only focus on the task set B ⊂ I without
breaking the constraints. That is,

∑
It

i∈B
rt
i ≤ rk∑

It
i∈B

∑
It

i′∈k′
bt
i,i′ ≤ bk,k′ ,∀k′ ∈ R

(4)

We call the task sets satisfying Eq. (4) as feasible task sets
for region k. The feasible sets can be explored efficiently by
simply performing a depth-first search [40] on tasks to which
region k is available through the available region sets. During
each iteration of the depth-first search, we gradually expand
the candidate feasible task set by adding untraversed tasks
and simultaneously update the leftover computing power and
bandwidth between other regions.

2) Algorithm Description: Given these insights, we propose
the submodular-based algorithm (SM-CTP) for the CTP prob-
lem in detail, which is formally described in Alg. 2. SM-CTP
consists of three steps. In the first step, the algorithm computes
the available region set for each task, and feasible task sets for
each region in advance (Line 2), and starts with an empty set
Φ (Line 3). In the second step (Lines 5-14), it loops through
the possible feasible task set S for each region to find the
maximum function value max

S
H(Φ∪{S}) (Lines 5-11). At the

end of each iteration, we add the feasible task set S with the
maximum submodular function value into Φ (Line 12). After
that, we update the available region set for each task and
the feasible task sets for each region based on the updated
available region sets (Lines 13-14). The algorithm performs
K − 1 iterations until we obtain K sets of tasks in Φ. In the
third step (Lines 16-18), we obtain the mapping relationship
between tasks and regions (i.e., xt

i,k).
3) Performance Analysis: We analyze the approximation

performance of our proposed algorithm based on the following
lemmas.

Lemma 2: Given the set U as the power set of I, the
function H defined in Eq. (3) is submodular on U .

Proof: Without loss of generality, we consider an arbi-
trary set Φ ⊆ U and an arbitrary set M ⊆ I. Assume that M
does not intersect with other sets in Φ, i.e., M ∩S = ∅,∀S ∈
Φ. Then, we have

H(Φ ∪ {M})−H(Φ) =
∑

It
i∈M

(cmax − ckm
)rt

i (5)
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Algorithm 2 SM-CTP: Submodular-Based Algorithm for CTP
1: Step 1: Initialization
2: Compute the available region set for each task, and the

set of feasible task sets Bk for each region k
3: Φ← ∅
4: Step 2: Iterative Selection
5: while |Φ| ≤ K − 1 do
6: Set tmp← 0, opt← 0
7: for k ∈ R do
8: for S ∈ Bk − Φ do
9: tmp← H(Φ ∪ {S})

10: if tmp > opt then
11: opt← tmp, S∗ ← S
12: end if
13: end for
14: end for
15: Φ← Φ + {S∗}
16: Update available region sets with Alg. 1
17: Update the feasible task sets based on the updated

available region sets
18: end while
19: Φ← Φ + {I −

⋃
S∈Φ S}

20: Step 3: Assignment of tasks and regions
21: for S ∈ Φ do
22: Set xk

i,t = 1 if It
i ∈ S if S is taken out from Bk

23: end for

where km is the region with the lowest electricity price that
can accommodate all tasks in M after placing tasks in Φ.
That is, km is an available region for all tasks in M , and M
is a feasible task set for region km. Given an arbitrary subset
Φ′ ⊆ Φ, it also follows

H(Φ′ ∪ {M})−H(Φ′) =
∑

It
i∈M

(cmax − ck′
m

)rt
i (6)

where k′m is the region with the lowest electricity price that
can accommodate all tasks in M after placing tasks in Φ′.

Note that two situations may happen: 1) The task sets in
Φ−Φ′ do not affect the placement results of tasks in M . That
is to say, after placing the tasks in Φ− Φ′, region k′m is still
able to accommodate all tasks in M . In this situation, tasks
in M will be placed in the same region k′m, i.e., ckm = ck′

m
.

2) If region k′m cannot accommodate all tasks in M after
placing the tasks inside Φ−Φ′, tasks in M should be placed
in another available region km. In this situation, we know that
ckm

> ck′
m

. As a result, in any situation, we have

ckm
≥ ck′

m
(7)

From Eq. (7), we can get:∑
It

i∈M
(cmax − ckm

)rt
i ≤

∑
It

i∈M
(cmax − ck′

m
)rt

i (8)

Combining Eqs. (5), (6) and (8), we know that:

H(Φ ∪ {M})−H(Φ) ≤ H(Φ′ ∪ {M})−H(Φ′) (9)

According to Definition 3, we show that the set function H is
submodular. □

Lemma 3: For a real-valued submodular and non-
decreasing function z(S) on U , the optimization problem

maxS⊆U{z(S) : |S| ≤ K, z(S) is submodular} can reach
a (1 − 1/e) approximation factor if the algorithm performs
greedily [39].

Theorem 4: Our SM-CTP algorithm achieves a (1 − 1/e)
approximation factor for the maximization problem as formu-
lated in Eq. (2).

Proof: We have proved that the function H is submodular
in Lemma 2. Besides, for any set Φ containing subsets of I
and M ⊆ I with M ∩ S = ∅,∀S ∈ Φ, it follows:

H(Φ ∪ {M})−H(Φ) ≥ 0 (10)

since cmax is the maximum unit electricity price among
regions. The equal sign is held only in the case where km

is the region with the highest price. Thus, the function H
is non-decreasing. By applying Lemma 3, we prove that our
proposed algorithm can reach a (1−1/e) approximation factor
for the CTP problem in Eq. (2). □

In fact, Nemhauser [41] has proved that any algorithm
evaluating the submodular function at a polynomial number
of sets will not be able to obtain an approximation guarantee
better than (1− 1/e), unless NP = P . Thus, we have:

Theorem 5: The maximization problem in Eq. (2) does not
admit a polynomial-time algorithm with approximation ratio
1− 1/e + ϵ unless NP = P , where ϵ is an arbitrary positive
constant.
We should note that the number of feasible sets for each
region may be exponential. However, the work [42] has shown
that a polynomial number of feasible sets are enough for
performance optimization. To achieve the trade-off optimiza-
tion between algorithm complexity and network performance,
we only construct the polynomial number (with input the
quadratic number of tasks |I|2) of feasible sets for each
region. Under this condition, the function H is calculated
O(K|I|2) times in each iteration and the algorithm runs in
K−1 iterations. As a result, the time complexity of SM-CTP
is O(K2|I|2).

C. Duplicated Placement

The CTP problem considers the situations where each task
only needs to be placed once in a cloud. The one-location-only
placement strategy, however, does not always entirely satisfy
the requirements of tenants. In some cases (e.g., CDN [43]),
tenants may have different geographical access requirements
from different locations. For example, as shown in Fig. 4, the
tenant has an access delay demand of less than 30ms for this
task at two different locations (locations 1 and 2). However,
no matter which region we place the task in, we fail to satisfy
the access delay demands of both locations simultaneously.
One way to solve this problem is to duplicate the task in two
copies in regions A and C separately. In this way, the tenants
can access the task from region A at location 1 and from region
C at location 2 while satisfying all the access delay demands.

Under these cases, the SM-CTP algorithm may fail because
the searching procedure for the available region set of each
task could return an empty set if there exists no region
that can meet all the delay demand constraints. Motivated
by the duplicated deployment strategy [44], [45], we adopt
this strategy to enhance our algorithm to cope with different
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Fig. 4. An example of duplicated deployment strategies for replicating tenant
tasks in different regions. In this example, we assume that the tenant has access
delay demands at two different locations. Left: the access delay demand for a
task and the delay between tenant and regions. Right: The task is replicated
into two copies and placed in region A and region C separately to meet all
the access delay demands.

situations. In general, we try to solve the duplicated placement
problem as follows:

min
∑

k

Ek

S.t



∑
k

xt
i,k ≥ 1, ∀i, t

0 < xt
i,kτ t,n

k ≤ τ t,n
i , ∀i, t, n, ∃k

0 < xt
i,kxt

i′,k′τk,k′ ≤ τ t
i,i′ , ∀(i, i′), t,∃(k, k′)∑

t

∑
i,i′

xt
i,kxt

i′,k′bt
i,i′ ≤ bk,k′ ∀(k, k′)∑

t

∑
i

xt
i,krt

i ≤ rk, ∀k

Ek =
∑

i

∑
t

xt
i,krt

ick, ∀k

xt
i,k ∈ {0, 1} ∀i, t, k

(11)

The constant τ t,n
i denotes the n-th access delay demand of

tenant t at location n for task It
i . The first set of inequalities

indicates the task placement constraint. That is, task It
i from

tenant t should be placed in at least one region. The second
set of inequalities denotes the access delay constraint, where
xt

i,kτ t,n
k represents the access delay from location n to region k

if we place task It
i in the region k. That is to say, there exists

at least one region where task It
i is placed to meet all the

access delay demand. The third set of inequalities expresses
the traffic delay constraint. That is, there exists at least one pair
of regions where task It

i and It
i′ be placed that can satisfy each

traffic delay demand. The fourth to sixth sets of inequalities
remains the same as in Eq. (1).

On the one hand, adding more task replicas makes it easier
to meet the requirements of tenants. On the other hand, placing
more task replicas means a significant increase in power
consumption. Thus, our objective here is also to minimize the
total electricity cost of all regions, that is, deploying as few
task replicas as to cover all the tenants’ requirements. To this
end, we give an iterative algorithm to gradually add duplicate
tasks to the task set I if Alg. 1 fails to find a non-empty
available set for any task, as shown in Alg. 3.

Algorithm 3 The Overall Procedure of Duplicated Placement
A

1: Step 1: Initialization
2: Initialize each available set A(It

i ) by Alg. 1
3: Step 2: Adding duplicated tasks
4: for It

i ∈ I do
5: if A(It

i ) is ∅ then
6: Put a duplicated task It

i′ into task set I
7: if τ t,n

k ≤ τ t,n
i for each each access delay demand

τ t,n
i then

8: A(It
i )← A(It

i ) + k
9: else

10: Transfer the demand τ t,n
i to duplicated task It

i′

11: end if
12: Calculate the available set A(It

i′) by steps 1 and 2
13: end if
14: end for
15: Step 3: Assignment of tasks and regions
16: Output the assignment of tasks and regions by Alg. 2

Alg. 3 first initializes each available set for each task by
Alg. 1 (Lines 1-2). If the available region set A(It

i ) is empty
for any task It

i , we know that placing this task in only one
region cannot fully meet all the access delay demand. Then the
algorithm adds a duplicated task It

i′ into the task set I (Lines
4-6). Then it re-inits the available set of It

i and tries to satisfy
access delay demand as much as possible, and other unmet
demands are transferred to the duplicated task (Line 7-10).
The algorithm runs iteratively steps 1 and 2 until there is no
empty available set (Lines 12). At last, we run algorithm Alg. 2
on the task set I to get the final results. Considering that there
are at most K duplicated tasks of each task, steps 1 and 2 run
at most K|I| times. As a result, the overall time complexity
of duplicated placement algorithm is O(K2|I|3).

D. Discussion

This section discusses some issues to enhance our TanGo
mechanism and extends it to adapt a more general situations.

A more general optimization goal. Although electricity
cost is a major component of cloud service providers’ operat-
ing costs, there may be other factors that impact the cost and
benefit of cloud providers in some practical scenarios [46].
For example, carbon emissions associated with electricity
consumption have become an increasingly important concern
in recent years. Besides, in scenarios where billing is based
on the size of traffic, the cost of bandwidth cannot be ignored,
especially in high-traffic situations. In addition, load balancing
and user experience may also need to be taken into account
as they may impact the willingness of tenants to pay for the
service.

To address such multi-objective optimization problems,
a feasible approach is to define the optimization objective as a
utility function, which can be formulated to balance different
goals, such as minimizing the energy and bandwidth cost,
reducing carbon footprint, improving performance, or max-
imizing user satisfaction. Specifically, the utility function
can be defined as a weighted sum of the different goals,
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where the weights reflect the importance of each goal to the
overall objective. By optimizing the utility function as shown
in Eq. (12), cloud providers can make trade-offs between
different objectives and achieve a more balanced and efficient
solution.

max
∑

j

Uj(fj) (12)

where fj is j-th factor and Uj is its corresponding
utility function. For example, if the cloud provider con-
siders including bandwidth costs in the optimization objec-
tive, a possible function definition can be defined as
−

∑
k,k′ dk,k′

∑
t

∑
i,i′ xt

i,kxt
i′,k′bt

i,i′ , where dk,k′ is the unit
bandwidth cost between region k and k′ and the negative
sign indicates an attempt to minimize the cost. Moreover,
if the cloud provider tries to minimize the total access
delay of tenants, another function could be defined as
−α

∑
k

∑
t

∑
i xt

i,kτ t
k, where α represents the proportion of

this factor in the overall objective function. Our proposed
algorithm can be adapted to handle such scenarios by mod-
ifying the definition of set function H and feasible task
sets, and its optimality is preserved as long as H remains
submodular.

However, the respective weights of these factors are sub-
jective and may require domain-specific knowledge. Besides,
some utility functions cannot be defined simply as linear (e.g.,
P95 for bandwidth billing [16]). We leave these issues as our
future work.

Workload replication. As outlined in Algorithm 3, our
objective is to strategically place duplicated tasks in order to
accommodate various access delay requirements. It is natural
to inquire about the bandwidth and delay requirements for
individual tasks across different replicas. However, we should
note that our proposed solution operates on the principle of
workload replication, where each copy of the task is scheduled
and executed independently in its respective region, without
the need for inter-replica communication.

For example, we consider a scenario involving high-
load conditions. In such scenarios, it is common to deploy
a load balancer along with multiple duplicated backend
servers. These backend servers are responsible for distributing
the incoming workload and ensuring high availability. The
load balancer acts as a traffic manager, receiving incom-
ing requests from clients and effectively distributing them
across the available backend servers. It is worth empha-
sizing that, in this specific setup, there is no requirement
for communication among the backend servers. Each back-
end server operates autonomously, handling its assigned
requests without any direct communication with other replicas.
Upon receiving a request, a server independently pro-
cesses the task, performs necessary computations or data
retrieval, and generates the corresponding response for the
client. This self-contained execution enables efficient paral-
lel processing of requests without the need for inter-replica
coordination.

By leveraging this approach, we can achieve workload
replication and optimize task placement without introduc-
ing communication overhead among replicated tasks. The

independence of backend servers ensures that each task replica
can operate in isolation, resulting in improved scalability, fault
tolerance, and response time.

Overall, our solution facilitates the efficient distribution
of tasks by strategically placing duplicated replicas while
allowing them to operate independently without the need
for inter-replica communication. This approach harnesses the
advantages of workload replication and enables effective uti-
lization of resources in diverse geographical regions.

IV. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

We evaluate the effectiveness of TanGo through the most
important metric, i.e., the electricity cost, including the hourly
cost and the average hourly cost. The hourly cost is the
electricity price multiplied by the total electricity consumption
of all regions in an hour. The average hourly cost is calculated
over the entire period. Moreover, we compared TanGo with the
following three practical benchmarks.

1) The first one, known as Lowest-Delay-First (LDF),
places all tasks of a tenant in the same region to
meet the traffic demand among tasks. LDF simulates
the preference behavior of tenants in the cloud and
selects the region with the lowest access delay to place
tasks [47]. However, this placement strategy does not
consider the cost factor. The computational complexity
of LDF is O(K|T |), as it selects one region k out of
|K| regions for each tenant t in T .

2) The second one, called Lowest-Cost-First (LCF), also
places tasks of the same tenant in the same region,
which mimics the preference decision-making process
of cloud providers such as Google [28]. Specifically,
it chooses the region with the lowest electricity price that
meets tenants’ access delay demand. The computational
complexity of LDF is also O(K|T |).

3) The third one, referred to as Cross-Region Lowest-Cost-
First (CR-LCF), uses a greedy cross-region strategy
based on LCF for task placement. Since no existing
work fully takes into account both regional diversity in
electricity prices and tenant requirements in region-wide
task placement, we employ this approach to better
illustrate the benefits of our solution. CR-LCF places a
task in a region with the lowest prices while satisfying
all the tenant requirements, including the access delay
demand and the traffic demands among tasks. Unlike
both LDF and LCF, CR-LCF may place tasks of a tenant
in multiple regions. The computational complexity of
CR-LCF is O(K|I|), as it develops a placement strategy
for each task of I individually.

B. Simulation Settings

Regional Topology. We assume that the regions are spread
across the continental U.S. in order to account for the geo-
graphic diversity of the cloud infrastructure and electricity
prices as in [20]. For the sake of convenience, we suppose
that each region, as depicted in Fig. 5, has a single data
center in a randomly selected location. In accordance with the
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Fig. 5. The U.S. cloud region selection topology and electricity price
($/MWh) [21].

topology settings established in previous studies [18], [20],
we selected 10 specific cities in the United States to serve
as the locations for our data centers. Similarly, the tenants
access these regions (i.e., data centers) randomly from another
100 cities. A random selection of cities was made to ensure
that our simulation results are not specific to any particular
city and that our results can be generalized to other cities.
Following the Euclidean distance which is easy to calculate,
we map the transmission latency between tenants and data
centers to the interval of 10ms to 100ms. We utilize the Federal
Energy Regulatory Commission’s annual average day-ahead
on peak pricing ($/MWh) as the electricity price for each
region [21]. For example, the electricity price in California
is $35.83/MWh while that of New York is $62.71/MWh.
The bandwidth between data centers is set to 50Gbps by
default [17].

Task Sets. We conduct simulations on two different
real-world task datasets: (a) Alibaba Cluster Trace [27] and
(b) Google Cluster Trace [28]. These two datasets both contain
the arrival time, the requested resources, and the duration of
tasks. More specifically, Alibaba Cluster Trace covers up to
76 thousands tasks submitted by 12 thousands tenants over
12 hours. We utilize this dataset to simulate low workload
situations, i.e., when the system is running well below the
total capacity it can handle. Google Cluster Trace covers up to
25 million tasks submitted by 2 million tenants over 29 days.
We use this dataset to simulate high workload scenarios to
study the performance of TanGo in high load clouds. For
fairness, we select tasks within 12 hours from both datasets.
Without loss of generality, we assume that a server at full load
consumes 1 KWh electricity per hour [48].

Tenant Requirements. To demonstrate the efficiency of our
algorithm in various settings, we thoroughly test how the ten-
ant requirements affect both our algorithm and the comparison
algorithms in the experiments. By default, we assume that each
tenant requires an average of 50ms access delay following
the uniform distribution. For the inter-task traffic demands,
we specify 5k task communication pairs from the task datasets,
where the delay and bandwidth demands are also taken from
the uniform distribution with an average bandwidth demand
of 50Mbps and an average delay demand of 50ms. While

Fig. 6. Hourly cost vs. time.

these parameters may deviate somewhat from actual values,
we perform multiple sets of tests to ensure the robustness of
our approaches, as shown in Figs. 7-10.

C. Evaluation Results

1) Evaluation on Overall Costs: We first test the per-
formance of TanGo against other comparison algorithms in
different scenarios without duplicated placement. The evalua-
tion results are shown in Figs. 6-12 as follows.

Hourly cost over time. To analyze the performance of these
algorithms intuitively, we test the hourly cost over 12 hours
on the two task datasets. The results are shown in Fig. 6.
Specifically, Fig. 6(a) shows that the hourly cost of all methods
varies with a time offset, where LDF has the highest cost while
TanGo achieves the lowest cost all over the time. For example,
at the eighth hour, the hourly cost of TanGo, LCF, LDF,
and CR-LCF is $77.5, $87.7, $104.8, and $83.6, respectively.
It means that TanGo can reduce the overall cost by over
11%, 26%, and 7% compared with LCF, LDF, and CR-LCF,
respectively. This is due to the fact that TanGo provides a more
advantageous placement decision from a global standpoint and
can handle tenant demands and regional resource restrictions
more equitably. We also observe that, despite the fact that
both LCF and CR-LCF favor regions with lower electricity
costs, the cost of CR-LCF will ultimately be less than that of
LCF. It implies that, if the tenant requirements and resource
constraints are satisfied, allowing tasks to be placed across
regions will be more likely to take advantage of regional
variances in electricity prices to minimize expenses. These
findings are likewise true with Google cluster trace as in
Fig. 6(b). For example, at the eighth hour, the hourly cost
of TanGo, LCF, LDF, and CR-LCF is $608, $718, $862,
and $697, respectively. More specifically, TanGo reduces the
hourly cost by about 15%, 30%, and 13% compared with
LCF, LDF, and CR-LCF. Moreover, we discover that TanGo
can reduce more cost than other methods in the case of
high workload (i.e., with Google cluster trace). The result
suggests that task placement in high workload scenarios has
a greater impact on performance than that in low workload
scenarios. Simple methods (e.g., CR-LCF) would lead to
inefficient usage of computing power or bandwidth among
regions.

To further demonstrate the high applicability of TanGo
under different scenarios, we compare TanGo, LCF, LDF, and
CR-LCF by changing the settings of tenant requirements. The
results are shown in Figs. 7-10, where we change separately
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Fig. 7. Average hourly cost vs. Average access delay demand.

the access delay, the number of communication pairs, and the
traffic delay and bandwidth demands, respectively.

Cost versus access delay demand. Fig. 7 analyzes the
impact of the access delay demand on the average hourly cost.
As the average access delay increases, the average hourly cost
decreases for all methods except LDF. That is because LDF
tends to select the closest region (with the lowest delay) for
each tenant. As for other methods, relaxing the average access
delay would increase the number of possible task placement
choices and lead to lower overall costs. In comparison, TanGo
achieves a lower cost than the other three methods. For exam-
ple, given the average access delay demand as 60ms under
low workload (i.e., with Alibaba cluster trace in Fig. 7(a)),
the average hourly cost of TanGo is $60.1 while that of LCF
and CR-LCF are $69.7 and $64.8. More specifically, TanGo
reduces the cost by about 13% and 7% compared with LCF
and CR-LCF. This difference is more pronounced with the
Google cluster trace in Fig. 7(b), where the cost of TanGo,
LCF, and CR-LCF are $675, $813, and $759, respectively.
That is to say, TanGo reduces the cost by about 17% and 11%
compared with LCF and CR-LCF.

Cost versus the number of task communication pairs.
We test the average hourly cost by changing the number
of communication pairs among tasks. The results are shown
in Fig. 8, where the horizontal axis is the number of com-
munication pairs, ranging from 1k to 10k. With more tasks
communication pairs, the average hourly cost of TanGo and
CR-LCF increases while that of LCF and LDF remains the
same, since these two algorithms do not consider the inter-task
traffic and place all the tasks of a tenant in the same region.
For example, as shown in Fig. 8(a), when the number of task
communication pairs reaches 6k, the average hourly cost of
TanGo, LCF, CR-LCF, and LDF is $58.2, $66.7, $62.6, and
$87.7, respectively. That is, TanGo can reduce the average
hourly cost by about 13%, 7%, and 33% compared with
LCF, CR-LCF, and LDF, respectively. As for the Google
cluster trace, the average hourly cost of TanGo, LCF, CR-LCF,
and LDF is $703, $818, $791, and $956, respectively. That
means TanGo reduces the cost by about 15%, 11%, and 26%
compared with LCF, CR-LCF, and LDF.

Cost versus delay demand among tasks. We also test the
average hourly cost by changing the average delay demand
between any two tasks. Fig. 9 shows the average hourly cost
with the average delay demand among tasks increasing from
10ms to 100ms. Note that when the average delay demand is
10ms, the average hourly cost of TanGo and CR-LCF is close

Fig. 8. Average hourly cost vs. Number of communication pairs.

Fig. 9. Average hourly cost vs. Avg. delay demand among tasks.

to that of LCF, since the delay between regions is more than
10ms, and we can only place related tasks in the same region.
The average hourly cost of both TanGo and CR-LCF decreases
as the average access delay increases. For example, as shown
in Figs. 9(a) and 9(b), when the average delay demand among
tasks reaches 70ms with Alibaba cluster trace, the average
hourly cost of TanGo, LCF, CR-LCF, and LDF is $54.5, $66.7,
$58.8, and $87.7, while the average hourly cost of TanGo,
LCF, CR-LCF, and LDF is $656, $818, $728, and $956 with
Google cluster trace, respectively. More specifically, TanGo
reduces the average hourly cost by about 25%, 10%, and
31.3% compared with LCF, CR-LCF, and LDF, respectively.

Cost versus bandwidth demand among tasks. The last
tenant requirement we study is the average bandwidth demand
between any two tasks. The results are shown in Fig. 10,
where the horizontal axis is the average bandwidth demand
between tasks, ranging from 10Mbps to 100Mbps. With the
average bandwidth demand increasing, the average hourly
cost of TanGo and CR-LCF increases while that of LCF and
LDF remains the same. In particular, the average hourly cost
rises significantly when the average bandwidth demand sur-
passes 40ms. This is because the bandwidth between regions
is constrained, and bandwidth preemption may occur. For
example, as shown in Fig. 8(b), when the average bandwidth
demand reaches 70Mbps, the average hourly cost of TanGo,
LCF, CR-LCF, and LDF is $681, $817, $755, and $956,
respectively. More specifically, TanGo reduces the average
hourly cost by about 17%, 10%, and 29% compared with LCF,
CR-LCF, and LDF, respectively.

To gain a deeper understanding, we extend the experiments
by changing the bandwidth and the variation in electricity
prices among those regions, as shown in Figs. 11-12.

Cost versus bandwidth between regions. In this set of
experiments, we change the bandwidth among regions, and
the results are shown in Fig. 11. The average hourly cost
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Fig. 10. Average hourly cost vs. Avg. Bandwidth demand among tasks.

Fig. 11. Average Hourly cost vs. Bandwidth between regions.

of TanGo and CR-LCF decreases as the bandwidth among
regions increases from 10Gbps to 100Gbps. For example,
when the bandwidth among regions achieves 70Gbps, the
average hourly cost of TanGo, LCF, CR-LCF, LDF is $53.7,
$66.8, $58.5, $87.8 with Alibaba cluster trace, and $637, $817,
$706, $956 with Google cluster trace. That means, TanGo
can reduce the average hourly by about 22%, 10%, and 33%
compared with LCF, CR-LCF,and LDF, respectively.

Cost versus standard deviation of prices. The last set
of experiments tests the average hourly cost by changing the
standard deviation of electricity prices while maintaining a
constant average. The results are shown in Fig. 12, where the
standard deviation of electricity prices is adjusted to $5, $10,
and $15, respectively. From Figs. 12(a) and 12(b) we learn
that the average hourly cost gap of each method gradually
widens as the standard deviation of the pricing rises. For
example, when the standard deviation of electricity prices is
$15, the average hourly cost with Alibaba cluster trace of
TanGo, LCF, CR-LCF, and LDF is $51.3, $63, $57.3, and
$86.8, respectively. More specifically, TanGo reduces the cost
by about 18.6%, 10.5%, and 41% compared with LCF, CR-
LCF, and LDF, respectively. The same is true for Google
cluster trace, where the average hourly cost of TanGo, LCF,
CR-LCF, and LDF is $611, $755, $688, and $955, respectively.
That means TanGo reduces the cost by about 19.1%, 11.2%,
and 36% compared with LCF, CR-LCF,and LDF, respectively.

From these simulation results, we can draw some conclu-
sions. First, as shown in Fig. 6, TanGo can achieve superior
performance in terms of electricity cost compared with the
other three methods. Second, as shown in Figs. 7-10, our
algorithm proves its effectiveness in different scenarios with
various tenant demands and workloads. Third, TanGo performs
well when conditions such as inter-region bandwidth and
electricity prices fluctuate, as shown in Figs. 11-12. Fourth,
compared with LCF and LDF, cross-region task placement

Fig. 12. Average Hourly cost vs. Standard deviation of prices.

Fig. 13. Number of Duplicated tasks vs. Number of access demands.

methods like TanGo and CR-LCF can reduce electricity costs
since they can better capitalize on regional differences in
electricity prices. Meanwhile, TanGo is superior to CR- LCF,
particularly in high workload scenarios.

2) Evaluation on Duplicated Placement: In this section,
to better demonstrate TanGo’s performance in more general
scenarios, we modify the tenant requirements as described
in Section IV-B, i.e., each tenant may have different access
demands at different locations. Similarly, we modify the
benchmark algorithms (LDF, LCF, and CR-LCF) to support
duplicated placement. More specifically, these algorithms pri-
oritize placing tasks in regions where they can satisfy the
most access demands considering the resource consumption of
duplicated placements. For example, the LCF algorithm selects
the region that can cover the most access demands of tenants.
If there are multiple options, LCF chooses the region with the
lowest electricity price. The algorithm keeps greedily selecting
until all access demands are satisfied.

Number of duplicated tasks versus number of access
demands. In this set of experiments, we change the average
number of access demands for each task from 1 to 10, and
test the average duplicated number of each task. The results
are shown in Fig. 13. When each tenant has only one access
demand for each task, there is no need to duplicate the
placement, i.e., the average number of duplicated tasks is 1.
However, we learn from Fig. 13 that the average number
of duplicated tasks gradually increases with the increasing
number of access demands for each task. For example, when
the average number of access demands reaches 5, the aver-
age number of duplicated tasks of TanGo, LCF, LDF, and
CR-LCF is 2.61, 3.42, 3.33, and 3.04 with Alibaba cluster
trace, respectively. The reason why LCF and LDF require a
significantly higher number of duplicated tasks is that these
two methods place tasks with traffic demands in the same
region. Therefore, when a task is duplicated, some other tasks
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Fig. 14. Number of Duplicated tasks vs. Access delay demand.

Fig. 15. Average hourly cost vs. Number of access demands.

must also be duplicated to meet the traffic demand. The same
is true for Google cluster trace, where the average number of
duplicated tasks of TanGo, LCF, LDF, and CR-LCF is 2.56,
3.44, 3.36, and 3.11, respectively. That means TanGo reduces
the number of duplicated tasks by about 34.3%, 23.8%, and
17.7% compared with LCF, LDF, and CR-LCF, respectively.

Number of duplicated tasks versus access delay demand.
We also test the number of duplicated tasks by changing the
average delay demand. Fig. 14 shows the number of duplicated
tasks with the average delay demand increasing from 10ms to
100ms. Meanwhile, the average number of access demands
for each task is set to 5 for ease of comparison. The average
number of duplicated tasks of all the methods decreases as
the average access delay increases since these access delay
demands can be more easily met by placing tasks in the same
region. For example, as shown in Figs. 14(a) and 14(b), when
the average delay demand reaches 70ms with Alibaba cluster
trace, the average number of duplicated tasks of TanGo, LCF,
LDF, and CR-LCF is 2.12, 3.11, 2.89, and 2.38, while that
of TanGo, LCF, LDF, and CR-LCF is 2.04, 3.05, 2.75, and
2.32 with Google cluster trace, respectively. More specifically,
TanGo reduces the number of duplicated tasks by about 33.1%,
25.8%, and 14.3% compared with TanGo, LCF, LDF, and CR-
LCF, respectively.

Cost versus number of access demands. Since duplicated
tasks consume more electric power, we test the trend of aver-
age hourly cost by changing the number of access demands
in this set of experiments. The results are shown in Fig. 15,
where the number of access demands increases from 1 to 10.
The difference in electricity costs between TanGo and the
other three methods gradually widens with the increasing
number of access demands due to the placement of fewer
duplicated tasks. For example, given five access demands, the
average hourly cost with Alibaba cluster trace of TanGo, LCF,
LDF, and CR-LCF is $148.2, $231.2, $281.3, and $164.9,

respectively. More specifically, TanGo reduces the cost by
about 35.9%, 47.3%, and 10.2% compared with LCF, LDF,
and CR-LCF, respectively. As for Google cluster trace, the
average hourly cost of TanGo, LCF, LDF, and CR-LCF is
$1754.9, $2643.6, $3211.3, and $2053.5, respectively. It means
TanGo reduces the cost by about 33.6%, 45.3%, and 14.5%
compared with LCF, LCF, and CR-LCF, respectively. There
are two reasons why TanGo performs significantly better than
other methods. One is that our proposed SM-CTP algorithm is
better at finding the most cost-effective region for each task.
The other is the ability of TanGo to generate as few duplicated
tasks as possible.

We can infer several conclusions from the results of these
three sets of experiments. First, Figs. 13-14 show that TanGo
can place fewer duplicated tasks to meet all the tenant access
demands compared with the other three methods. Besides, our
algorithm demonstrates its efficacy in different scenarios with
various tenant access demands. Second, as shown in Fig. 15,
TanGo achieves superior performance in terms of electricity
cost compared with the other three methods with duplicated
placement. Third, compared with cross-region task placement
methods like TanGo and CR-LCF, LCF and LDF place more
duplicated tasks to meet the traffic among tasks.

3) Evaluation on Runtime and Optimality: In this section,
we provide a detailed comparison of the efficacy and accu-
racy of Tango in comparison to the state-of-art LP solver
(Gurobi [37] in our experiment), demonstrating the computa-
tional efficiency of Tango without sacrificing much optimality.
We conducted benchmark testing on a system equipped with
an Intel Core i5-10400F processor and 32GB of RAM.

Performance comparison with Gurobi and its optimal
solution. In this set of experiments, we change the number of
tasks from 20 to 240, and test the runtime and percentage devi-
ation from the optimal obtained by the IP solver (Gurobi). The
overall cost percentage deviation from the optimal solution
represents the performance metric. The results are depicted
in Fig. 16. As shown in Fig. 16(a), the running time of LP
solver significantly increases as the number of tasks increases.
This is due to the fact that the number of variables to be
solved increases proportionally with the number of tasks.
For example, when the number of tasks is 200, a total of
2000 variables (with 10 regions) need to be solved. Further-
more, the nonlinearity of the problem brings more complexity
to direct solving procedure. Although TanGo takes relatively
longer runtime compared to other benchmarks, as shown in
Fig. 16(b), TanGo provides a relatively good performance
guarantee, with the difference between its solution and the
optimal solution within 5% at most time, which demonstrates
the practicality and effectiveness of our proposed algorithm.
It should be noted that the runtime of these algorithms is
dependent on the performance of the device. As the device’s
performance increases, the execution time of these algorithms
is expected to decrease.

We also test the algorithms’ runtime and performance
compared to the optimal solution in the scenarios of duplicated
placement. The results are shown in Fig. 17 with the number
of tasks varying from 20 to 240. We observe that TanGo
also achieves relatively good performance within an acceptable
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Fig. 16. Performance comparison with gurobi and its optimal solution.

Fig. 17. Performance comparison with gurobi and its optimal solution
(Duplicated Placement).

runtime with duplicated placement. Moreover, the performance
gap between TanGo and other benchmarks is more significant,
which is attributed to the fact that TanGo deploys fewer
duplicate tasks.

V. RELATED WORKS

In this section, we summarize recent related works on
geo-distributed cloud computing, task placement strategies,
and prior efforts on economy efficiency in clouds.

Geo-distributed Cloud Computing. The study of cloud
computing has gained popularity in recent years, and cloud
infrastructure has increasingly shown a propensity toward
geographic dispersal to offer tenants throughout the world
connectivity at any time and from any location. Consider-
ing the characteristics of geographically distributed clouds,
Valley [49] proposes a system that can place application
data across the geo-distributed cloud while dealing with
different business constraints. GA-Par gives [50] a depend-
able microservice orchestration framework to reduce the
discrepancy between user security requirements and actual
service provision. Some other works [51], [52] propose new
geo-distributed cloud storage to support low-cost and latency
storage services. Distributed services produce significant net-
work traffic inside clouds. To address it, some cloud traffic
management frameworks [15], [53], [54] are proposed, ranging
from geographical load balancing to backbone traffic engineer-
ing. However, the resource constraints of the cloud region itself
are often overlooked in these works.

Task Placement. As a cloud provider, how to place tasks
properly is important, as this can increase the utilization,
productivity, or profit of a cloud. To achieve the optimal task
placement, authors in [55] offload dependent tasks to edge
nodes with limited service caching in order to minimize the
Job Completion Time (JCT), and NEAT+ [56] gives a task
scheduling framework that leverages information from the

underlying network scheduler and available compute resources
to make task placement decisions. However, as geographically
distributed clouds grow, cloud tenants’ access demands for
tasks become broader in scope. As a result of access delay
demands and computing power constraints, cloud providers
often cannot restrict the task distribution on their servers to a
particular data center or region. Some previous works make
efforts to reduce power consumption through multi-region
task placement in a geo-distributed cloud while offering low
access delay to end users [14] or reducing inter-DC traffic
volume [16], [17]. However, these works often ignore the
regional differences in resource prices, which may result in
increased operating costs.

Economy Efficiency in Clouds. The objective of cloud
providers is to lower overall operating costs, which is based
on not only how much power they use but also the price of
the power source, which varies greatly in different regions.
Some studies consider adopting eco-friendly and economy
efficient energies [9], [12], [57] to reduce the overall cost
inside a data center or a region. Authors in [58] propose a
cloud-based electricity consumption analysis approach using
neural networks to help understand the energy consumption
pattern. The authors in [46] consider optimizing overall costs
associated with cloud resource, bandwidth, and deployment by
proactively planning cloud resource allocation based on peak
traffic awareness. Some other works, such as [18], [19], and
[20], are motivated by the geographical diversity in electricity
prices and concentrate on the issue of lowering the electricity
cost of data centers by rerouting user requests to various
data centers while taking into account regional electricity
price diversity. For instance, the authors in [19] study the
problem of task placement over geo-distributed data centers
while ensuring user quality-of-service, and authors in [20]
consider the bandwidth constraints between data centers. The
majority of these efforts, however, assume that tasks are
carried out individually and do not account for the traffic
demands between tasks. As a result, they are inapplicable to
the current large-scale distributed cloud system.

VI. CONCLUSION AND FUTURE WORK

In this paper, we explore the challenges faced by
region-wide distributed task placement and formulate the
electricity cost minimization problem for task placement in
a geo-distributed cloud. Then we solve this problem with
an effective submodular-based algorithm. Results of in-depth
analyses based on real-world electricity prices and task
datasets show the efficacy of our algorithm compared with
other solutions. In the future, we will endeavor to refine our
cloud task placement optimization by exploring diverse cost
considerations and incorporating realistic network modeling
for inter-datacenter communication.
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