
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Toward a Service Availability-Guaranteed Cloud
Through VM Placement

Jiawei Liu, Gongming Zhao , Member, IEEE, Hongli Xu , Member, IEEE, Peng Yang, Baoqing Wang,
and Chunming Qiao, Fellow, IEEE

Abstract— In a multi-tenant cloud, the cloud service provider
(CSP) leases physical resources to tenants in the form of vir-
tual machines (VMs) with an agreed service level agreement
(SLA). As the most important indicator of SLA, we should
guarantee the service availability of tenants when placing the
VMs. However, previous works about VM placement mainly
concentrate on optimizing the cloud resource utilization, but only
a few works consider the service availability by measuring the
hardware availability. In fact, abnormal tenants can make the
corresponding service unavailable by launching network attacks.
That is, both the hardware availability and the tenant uncertainty
will affect the service availability of VMs on physical machines
(PMs). Without considering this factor, the CSP may fail to
meet the tenant’s SLA requirements, leading to a reduction in
revenue. To solve such a problem, this paper considers the service
availability in terms of both the hardware availability and the
tenant uncertainty, and studies the service availability-guaranteed
VM placement in multi-tenant clouds (SAG-VMP) problem. This
problem is very challenging since the service availability actually
changes with the tenants served on the PM. To address this
issue, we propose a two-phase approach: PM assignment and
VM placement. The first phase determines the availability of
each PM through a long-term tenant-PM mapping algorithm
and the second phase places each VM on a PM that meets the
service availability requirement based on a primal-dual online
algorithm. Two algorithms with bounded approximation factors
are proposed for these two phases, respectively. Both small-scale
experiment results and large-scale simulation results show the
superior performance of our proposed algorithms compared with
other alternatives.

Index Terms— Cloud computing, multi-tenant, SLA, service
availability, approximation, VM placement.
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I. INTRODUCTION

CLOUD computing can significantly reduce tenants’ cost
of maintaining the physical infrastructure through cen-

tralized management, and thus more and more tenants (e.g.,
enterprises and individual users) are migrating their tasks
to the cloud [1]. In order to provide computation resources
to tenants, Cloud Service Providers (CSPs), e.g., Amazon
Web Services (AWS) [2] and Google Cloud [3], virtualize
computing resources as Virtual Machines (VMs), which are
then leased to tenants. Considering the various requirements
of different tenants and heterogeneity of physical machines
(PMs), one of the most important problems faced by CSPs is
VM placement.

In a multi-tenant cloud, the CSP provides VMs to tenants
and gets paid from tenants. Each tenant has a service level
agreement (SLA) with its CSP and one of the most important
SLA indicators is service availability [4]. Service availability
is the percentage of uptime of a VM, which can be measured
by dividing the service available time by the total service
cycle time. In practice, according to the SLA (e.g., SLA of
AWS [5] or Google Cloud [6]), when the service availability
of VMs provided by CSP to tenants cannot meet the SLA
targets, CSP should provide compensation to tenants, which
will significantly reduce the revenue of CSP. For example,
in the Compute Service Level Agreement for AWS [5], if a
tenant’s service availability target is 99.99%, CSP is required
to refund the tenant at least 10% of the service fee when the
actual uptime percentage of the tenant’s VMs falls below that
target. In order to maximize the revenue of CSP, we must
ensure the service availability when placing tenants’ VMs,
which is challenging.

Previous works of VM placement mainly concentrate on
optimizing the cloud resources in different aspects, such as
maximizing resource utilization or load balancing [7], [8],
[9], reducing network traffic or improving network perfor-
mance [10], [11], saving cost or energy [12], [13]. Regretfully,
these works do not consider the service availability require-
ments of tenants, thus may lead dissatisfaction to tenants and
reduce the revenue of the CSP. To bridge the gap, the studies
on service availability of cloud computing has attracted more
and more attention [14], [15], [16], [17]. However, those works
simply consider the availability of hardware equipment, i.e.,
hardware availability.

In fact, in a multi-tenant cloud, the availability of a PM
is related to not only its hardware availability, but also
the tenants deployed on this PM. Specifically, the abnor-
mal tenants (e.g., malicious tenant) are common [18] in a
multi-tenant cloud. These abnormal tenants may launch a
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wide spectrum of network attacks, including denial of service
(DoS) and co-residency attacks [19]. The attacks launched by
abnormal tenants will send a large amount of traffic, reduce
the performance of PMs, and even paralyze PMs, which affect
the availability of the PMs. More seriously, once the shared
physical resources (e.g., caches and network adapter) are mali-
ciously occupied by abnormal tenants, it affects the VMs of
other tenants on the same PM. In this case, the availability of
the PM is much lower than its hardware availability. Therefore,
when it comes to the availability of the PMs in a multi-tenant
cloud, the uncertainty of tenants (i.e., the availability impact
from tenants) served on PMs should not be ignored, which
has not been noticed in previous works.

In this paper, we consider the service availability in terms
of both the hardware availability and the tenant uncertainty,
and study the problem of service availability-guaranteed VM
placement in multi-tenant clouds (SAG-VMP). Note that, it is
far from trivial to introduce the tenant uncertainty into the
availability calculation of PMs. This is because the availability
of the PM is uncertain and will vary with the tenants it serves.
To conquer the above challenges, we solve the SAG-VMP
problem by taking a two-phase approach: PM assignment
and VM placement. For the first subproblem, we quantify the
impact of tenant uncertainty on the availability of a PM and
determine the availability of each PM through a long-term
tenant-PM mapping algorithm. For the second subproblem,
we use a primal-dual online algorithm to place each VM on a
PM that meets the service availability requirement. The main
contributions of this paper are as follows:

1) We are the first work to quantify the impact of
tenant uncertainty on service availability in a multi-
tenant cloud. We formulate the problem of service
availability-guaranteed VM placement in multi-tenant
clouds (SAG-VMP) and solve the problem by tak-
ing a two-phase approach: PM assignment and VM
placement.

2) For the PM assignment subproblem, we prove it is
NP-hard. We propose a randomized rounding based
algorithm, and prove the approximation factor is
O(log n), where n is the number of PM nodes in a data
center.

3) For the VM placement subproblem, we prove it is
also NP-hard. We design an online algorithm based on
the primal-dual method. Moreover, we analyze that the
proposed algorithm can achieve the competitive ratio of
[1/(1 + ρ), O (log J + log(1/ρ))], where ρ ∈ (0, 1) and
J is a system dependent constant.

4) We conduct small-scale tests and large-scale simulations
using real-world topologies and datasets to show that
the proposed algorithms achieve superior performance
compared with state-of-the-art solutions.

The rest of this paper is organized as follows. Section II
presents the related works. Section III introduces the system
model, the problem statement and the algorithm workflow.
In Section IV, we propose a rounding-based offline algorithm
for the PM assignment subproblem. Section V gives a
primal-dual based online algorithm to solve the VM place-
ment subproblem. The experiment and simulation results
are given in Section VI. In Section VII, we conclude this
paper.

II. RELATED WORK

To achieve a service availability-guaranteed cloud, the CSP
expects to meet the service availability of served tenants while
obtaining the maximum revenue. In this section, we summarize
the state-of-the-art VM placement solutions and studies on the
service availability of cloud computing.

In recent years, a series of VM placement mechanisms
have been widely proposed, focusing on optimizing cloud
resources from various perspectives. Maximizing resource
utilization and load balancing [7], [8], [9] in the cloud are
among the most prominent research areas in VM placement.
Chhabra and Singh [7] propose the Optimal VM Place-
ment for load balancing mechanism, which utilizes maximum
likelihood estimation for parallel and distributed applica-
tions. Their approach improves throughput and reduces failure
rate by considering CPU, memory, and energy estimations.
Kumar et al. [8] develop a novel load-balancing framework
that aims to minimize the operational cost of data centers by
improving resource utilization. Their framework employs a
modified genetic algorithm to achieve an optimal allocation
of VMs on physical machines. Yao et al. [9] address resource
fragmentation, inefficient utilization, and energy wastage in
cloud data centers through a load balancing strategy based
on virtual machine consolidation. Their strategy includes load
state classification, resource-weight based VM selection, and
VM placement algorithms to optimize resource utilization.
Reducing network traffic and improving network perfor-
mance are also active research areas in VM placement [10],
[11]. Farzai et al. [10] propose a combined meta-heuristic
communication-aware VMP approach, which reduces the total
traffic load on network links by placing high-affinity VMs
in close proximity whenever possible, particularly designed
for VL2 topology. Xing et al. [11] present a traffic-aware
ant colony optimization algorithm for VMP, incorporating
innovative schemes for PM selection, VM ordering, and infor-
mation exchange. Saving cost and energy [12], [13] is another
major research direction in VM placement. Abbasi-khazaei
and Rezvani [12] propose a multi-objective VMP approach
that addresses the challenge of balancing renewable and fossil
energy consumption in cloud data centers, while considering
the time-constraint nature of IoT requests. Banerjee et al. [13]
tackle the challenge of reducing energy consumption and
improving resource utilization efficiency in cloud data centers
with a novel game-theoretic approach.

While previous works in VM placement mainly concentrate
on optimizing resource utilization, the importance of service
availability in cloud computing has gained increasing atten-
tion [14], [15], [16], [17]. Lin et al. [14] propose a failure
prediction technique based on historical data to identify faulty
nodes in cloud service systems, enabling better VM allocation
and migration for improved availability. Yang et al. [15]
propose a delay-sensitive and reliable VM placement strategy
to improve application placement availability in the cloud.
Similarly, Liu et al. [17] develop a multi-objective optimization
approach that considers virtual cluster availability, energy
consumption, resource utilization, and load balance to achieve
a trade-off among these objectives. Both studies aim to ensure
service availability by assigning VMs with distinct service
availability requirements to PMs with varying hardware avail-
ability levels. Zhao et al. [16] propose a multi-constraint VM
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TABLE I
CLASSIFYING STATE-OF-THE-ART VM PLACEMENT SOLUTIONS IN CLOUD COMPUTING BASED ON VARIOUS TOPICS

placement scheme to mitigate the impact on service availabil-
ity caused by PM failures by limiting the number of tenants
hosted by each PM. In conclusion, while previous works have
acknowledged the significance of service availability in VM
placement problems, they have primarily focused on hardware
availability and overlooked the influence of tenant uncertainty
on service availability. As far as we know, this is the first
study to quantify the impact of tenant uncertainty on service
availability within a multi-tenant cloud environment.

III. PRELIMINARIES

A. System Model
This section introduces the system model in multi-tenant

clouds, including cloud infrastructure model, multi-tenant
model and service availability model. For the ease of reference,
the key notations in this paper are summarized in Table II.

1) Cloud Infrastructure Model: A typical cloud consists of
several data centers and each data center consists of many
PMs. For example, by the end of November 2021, Google
Cloud has more than 200 data centers around the world [3],
one of which consists of 10047 PMs [20]. In this paper,
we focus on the VM placement problem in a data center. Let
P = {p1, p2, . . . p|P |} denote the set of PM, where |P | is the
number of PMs in the data center. Since a PM is composed of
many components (e.g., CPU, memory and hard disk), we use
a tuple (p, c) to represent the component c of the PM p. Let
R(p, c) denote the resource capacity of component c of PM
p. Furthermore, we use Rp to denote the resource capacity of
each PM p ∈ P , i.e., Rp is the vector of R(p, c).

2) Multi-Tenant Model: In a multi-tenant cloud, it usually
consolidates VMs from different tenants atop a powerful PM.
Let T = {t1, t2, . . . t|T |} denote a set of |T | tenants. For
each tenant t ∈ T , we represent the set of requested VMs
as Vt = {v1

t , v
2
t , . . . v

|Vt|
t }, where |Vt| is the number of VMs

required by tenant t. Each VM v of tenant t will consume some
resources, such as CPU and RAM, denoted as Dv

t . Then we
use Dt =

∑
v∈Vt

Dv
t to denote the resource demand of tenant

t. Similar to Rp, both Dv
t and Dt are also vectors. Let Qv

t

denote the revenue of CSP from VM v of tenant t. Then, the
revenue of CSP from tenant t is denoted as Qt =

∑
v∈Vt

Qv
t .

Let At ∈ [0, 1] represent the promised service availability of
the CSP to tenant t ∈ T , which is known in advance by the
CSP. Specifically, if the SLA target of service availability of
a tenant t is 99.99%, we have At = 0.9999.

3) Service Availability Model: To meet the service avail-
ability of the served tenants, a natural method is to deploy

TABLE II
KEY NOTATIONS

the tenants’ VMs on PMs that meet the availability require-
ments [15]. Similar to prior studies [15], [21], the hardware
availability of a PM component can be measured by its mean
time to failure (MTTF) and mean time to repair (MTTR). Let
A(p, c) denote the hardware availability of component (p, c),
which can be calculated as follows:

A(p, c) =
MTTF (p, c)

MTTF (p, c) +MTTR(p, c)
(1)

In reality, the MTTF and MTTR of each component can be
obtained from its factory documents and detailed maintenance
logs [14], [15], respectively. As discussed in works [15], [21],
[22], [23], the hardware availability of a PM is determined
by the availability of its components. For instance, if the
CPU of a PM fails, the PM becomes unavailable. Similarly,
abnormalities in memory can also affect the usability of the
PM. Let’s use Cp to denote the component set of PM p, we can
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derive the hardware availability of the PM p as follows:

Ap =
∏

c∈Cp

A(p, c) (2)

Obviously, Ap ∈ [0, 1]. In this paper, since our focus is not on
how to calculate the hardware availability of a PM, we assume
that hardware availability Ap of each PM p is known.

In addition, the availability of a PM is closely related to the
served tenants. Let µt denote the probability that the tenant
t is an abnormal tenant (i.e., abnormal rate), which can be
obtained through its historical behavior and credit level [24].
Similar to the hardware availability of a PM, since our focus
is not on determining whether tenant t is an abnormal tenant
or not. In this paper, we assume the abnormal rate µt of a
tenant t is known. Let yp

t represent whether the CSP chooses
PM p to provide services for tenant t or not. The availability
A′p of the PM p can be calculated as follows:

A′p = max
{

0, Ap −
∑

t∈T
yp

t · µt

}
, ∀p ∈ P (3)

B. Problem Statement
Given the complexity of the SAG-VMP problem, this

section provides an overview. For a detailed exposition, refer
to Section IV and Section V, which aim to enhance the
clarity and completeness of our paper. For each VM place-
ment request from different tenants, the data center must
determine whether to accommodate the VM and which PM
it should be placed on. In general, the goal of SAG-VMP is
to pursue a maximum revenue of CSP as in many previous
works [25], [26]. To achieve a service availability-guaranteed
cloud, there are two specific constraints when pursuing the
maximum revenue.

1) PM Resource Constraint: For each PM p in the data
center, the resources used to place VMs cannot exceed
its resource capacity Rp.

2) Service Availability Constraint: To ensure the service
availability of served tenants. On the one hand, the
availability A′p of each PM p should be considered from
both the hardware availability and the tenant uncertainty,
as discussed in Section III-A.3. On the other hand, each
VM of the served tenants should be placed on the PMs
that meet its service availability requirement.

Here the revenue is as a case study in a cloud environment. It is
worth noting that our problem and the proposed algorithm can
easily be transformed into throughput maximization or other
problems and corresponding algorithms.

C. Algorithm Workflow
In Section III-B, we summarize two critical constraints

in the SAG-VMP problem, i.e., PM resource constraint and
service availability constraint. It should be noted that the
availability of a PM is closely related to the tenants it serves,
as discussed in Section III-A.3. In other words, when placing
VMs, the availability of PMs is uncertain and changing
with the tenants it serves. Thus, the SAG-VMP problem
actually contains two sub-problems: PM assignment and VM
placement. Specifically, the first subproblem determines the
availability of each PM through a long-term tenant-PM map-
ping and the second subproblem places each VM on a PM
that meets the service availability requirement.

Fig. 1. Algorithm Workflow.

One may think that it is natural to design an algorithm
to jointly solve the above two sub-problems. However, since
these two sub-problems have some inherent differences, it may
not be feasible. Specifically, if we update the tenant-PM map-
ping (i.e., PM assignment) in the data center, the availability
of many PMs will be changed and the service availability of a
large number of VMs will be affected. To ensure the service
availability of tenants, after each tenant-PM mapping update,
the CSP needs to migrate VMs that do not meet the service
availability requirements to the new PMs. It will significantly
increase control overhead of CSP to maintain the consistency
of VMs before and after migration. Thus, we should reassign
PMs for tenants in a long-term interval. Meanwhile, tenants
may create/delete VMs dynamically [1] and the faster the
CSP responds to a tenant’s VM placement request, the higher
degree of satisfactory the tenants will experience [27]. Thus,
it is necessary to place VMs in an online manner.

To this end, as depicted in Fig. 1, this paper solves the
SAG-VMP problem through two phases: PM assignment
(PMA) and VM placement (VMP). Both PMA and VMP are
executed on the schedulers within the data center. PMA is
triggered when a new tenant joins the system and undergoes
periodic updates over a longer time scale, such as daily. For
this phase, we propose a rounding-based offline algorithm to
determine the availability of each PM (Section IV). In contrast,
VMP operates in real-time to efficiently manage and respond
to VM requests from tenants. For this phase, we present
a primal-dual based online algorithm to place each VM
(Section V). Additionally, the information synchronization of
two phases is achieved through a database (DB).

IV. PM ASSIGNMENT

In this section, we first formulate the PM assignment (PMA)
problem as a mixed integer programming problem. To solve
this problem, we propose an approximation algorithm and
analyze the algorithm performance.

A. Problem Definition for PMA
In order to determine the availability of each PM and

meeting the service availability of each served tenant at a long-
term interval, the PMA problem focuses on selecting which
tenants to serve and choosing a feasible set of PMs for each
served tenant. Specifically, given a set of PMs P and a set of
tenants T in a data center, let zt ∈ {0, 1} indicate whether
the tenant t is served by the data center or not. We use a set
Tr to denote the served tenants, i.e., Tr = {t|t ∈ T, zt = 1}.
Let binary variable yp

t indicate whether the CSP chooses PM
p to provide services for the tenant t or not. We use a set

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 09,2024 at 14:23:54 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: TOWARD A SERVICE AVAILABILITY-GUARANTEED CLOUD THROUGH VM PLACEMENT 5

Pt to denote the feasible set of PMs for each served tenant
t ∈ Tr, i.e., Pt = {p|p ∈ P, yp

t = 1}. Let xp
t ∈ [0, 1]

denote the demand proportion of tenant t obtained from PM p.
A feasible PM assignment scheme should satisfy the following
constraints:

1) Tenant Deployable Constraint: For each served tenant
t (i.e., zt = 1), we should provide all the services they
need. That means, for each tenant t ∈ T ,

∑
p∈P x

p
t = zt.

2) PM Resource Constraint: The resources provided by PM
p cannot exceed its resource capacity Rp. That means,
for each PM p ∈ P ,

∑
t∈T x

p
t ·Dt ≤ Rp.

3) PM Availability: The availability of each PM requires
to consider both the hardware availability and the tenant
uncertainty. That means, for each PM p ∈ P , A′p =
Ap −

∑
t∈T y

p
t · µt.

4) Service Availability Constraint: Each tenant should sat-
isfy its service availability at a long-term interval, i.e.,
all VMs of tenant t should be placed on PM p that can
meet its service availability requirement At. That means,
for each tenant t ∈ T and each PM p ∈ P , A′p ≥ At ·yp

t .
We aim to find a feasible PM-tenant mapping solution with a
maximum revenue of the CSP. Thus, the PMA problem can
be formulated as follows:

max
∑

t∈T
zt ·Qt

S.t.



xp
t ≤ y

p
t , ∀t ∈ T, p ∈ P

yp
t ≤ zt, ∀t ∈ T, p ∈ P∑

p∈P
xp

t = zt, ∀t ∈ T∑
t∈T

xp
t ·Dt ≤ Rp, ∀p ∈ P

A′p = Ap −
∑

t∈T
yp

t · µt, ∀p ∈ P
A′p ≥ At · yp

t , ∀t ∈ T, p ∈ P
xp

t ∈ [0, 1], ∀t ∈ T, p ∈ P
yp

t ∈ {0, 1}, ∀t ∈ T, p ∈ P
zt ∈ {0, 1}, ∀t ∈ T

(4)

The first set of inequalities indicates whether some VMs of
tenant t will be placed on PM p or not. The second set of
inequalities indicates that only if the data center provides ser-
vices to the tenant t, the VMs of tenant t can be placed on the
PMs in this data center. The third set of equations represents
the tenant deployable constraint. The fourth set of inequalities
denotes the PM resource constraint. The fifth set of equations
represents the PM availability. The last set of inequalities
denotes the service availability constraint. Our objective is to
maximize the revenue of CSP, i.e., max

∑
t∈T zt ·Qt.

Theorem 1: The PMA problem is NP-hard.
Proof: We consider a special example of the PMA prob-

lem, in which there is no constraint on the service availability
(i.e., At = 0,∀t ∈ T ), and assume that no tenant in the cloud is
an abnormal tenant (i.e., µt = 0,∀t ∈ T ). Then, this becomes
a Multi-dimensional 0-1 knapsack problem (MKP) [28], which
is NP-Hard. Since the MKP problem is a special case of our
problem, the PMA problem is NP-Hard too. □

B. Algorithm Design for PMA
Since the variables zt and yp

t are binary, it is difficult to
solve PMA in a timely manner. Accordingly, in this section,
we propose a rounding-based algorithm for the PMA problem,

Algorithm 1 RD-PMA: Rounding-based Algorithm for PMA
1: Input: System Model in Section III-A
2: Step 1: Sloving the relaxed PMA problem
3: Construct a linear program by replacing with yp

t ∈ [0, 1]
and zt ∈ [0, 1] in Eq. (4)

4: Derive the optimal fractional solutions {x̃p
t , ỹ

p
t , z̃t}

5: Step 2: Selecting tenants to serve
6: Initialize the served tenant set Tr = ∅
7: for each tenant t ∈ T do
8: Initialize ẑt = 0
9: Set ẑt ← 1 with probability z̃t

10: if ẑt == 1 then
11: Set Tr ← Tr ∪ {t}
12: Step 3: PM assignment for served tenants
13: for each tenant t ∈ Tr do
14: Initialize the feasible PM set Pt = ∅
15: for each PM p ∈ P do
16: Initialize x̂p

t = 0 and ŷp
t = 0

17: Set ŷp
t ← 1 with probability ỹp

t /z̃t

18: if ŷp
t == 1 then

19: Set x̂p
t ← x̃p

t /ỹ
p
t and Pt ← Pt ∪ {p}

20: Step 4: Updating PM availability
21: for each PM p ∈ P do
22: A′p ← Ap −

∑
t∈Tr

ŷp
t · µt

23: Output: Tr, Pt1, Pt2, . . . Pt|Tr|, A
′
p1, A

′
p2, . . . A

′
p|P |

called RD-PMA. This algorithm consists of four steps. The
first step relaxes Eq. (4) by replacing the eighth and ninth lines
of integer constraints with yp

t ∈ [0, 1] and zt ∈ [0, 1], which
reduces the PMA problem to be a linear programming. We can
solve it with a linear programming solver (e.g., Cplex [29]) and
obtain the optimal fractional solutions {x̃p

t }, {ỹ
p
t }, and {z̃t}.

In the second step, we determine the tenants to serve, i.e.,
obtain feasible solutions {ẑt}. We first initialize an empty set
Tr. For each individual tenant t, RD-PMA rounds variables
{ẑt} to 1 with probability {z̃t}. Note that each rounding
decision is independent of each other. If ẑt = 1, CSP will
use the data center to provide services to the tenant t, then
we add tenant t into the served tenant set Tr. In the third
step, we assign a feasible PM set to each served tenant,
i.e., obtain feasible solutions {ŷp

t } and {x̂p
t }. For each tenant

t ∈ Tr, we first initialize an empty set Pt. Then, for each PM
p ∈ P , we set ŷp

t ← 1 with probability ỹp
t /z̃t. If ŷp

t = 1,
we add the chosen PM p into feasible PM set Pt and set
x̂p

t ← x̃p
t /ỹ

p
t . In the fourth step, we update the availability of

each PM. For each PM p ∈ P , we calculate its availability by
A′p ← Ap−

∑
t∈Tr

ŷp
t ·µt. After the above four steps, we can

obtain the served tenant set Tr, the feasible PM set Pt of each
tenant t ∈ Tr and the availability A′p of each PM p ∈ P . The
RD-PMA algorithm is formally described in Algorithm 1.

C. Performance Analysis
Theorem 2: The Algorithm 1 can achieve the bi-criteria

approximation of (log n/γ + 1, log n/τ + 1), where
n denotes the number of PMs in the data center,
γ = min

{
Rmin

p /Dt, t ∈ T
}

and τ = min{Amin
p /µt, t ∈ T}.

It means that the RD-PMA algorithm can achieve the optimal
solution, violating the PM capacity by at most a factor
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log n
γ + 1, violating the service availability of tenant by at

most a factor log n
τ + 1.

Proof: We analyze the approximate ratio based on the
randomized rounding method [16], [30]. The detailed proof
has been relegated to Appendix B-A. □

Theorem 3: The time complexity of the Algorithm 1 is
O((2|T ||P | + |T |)2+1/6 log(2|T ||P | + |T |)), where |T | rep-
resents the number of tenants, and |P | represents the number
of PMs in the data center.

Proof: The time complexity of the RD-PMA algorithm
can be divided into the following four parts. In Step 1,
we use a linear programming solver (e.g., Cplex [29]) to
obtain the optimal fractional solution. According to state-
of-the-art work [31], linear programming problems can be
solved with a time complexity of O(n2+1/6 log(n/δ)), where
δ represents the relative accuracy, and n denotes the number
of variables. In the context of the PMA problem, the variables
include xp

t , yp
t , and zt. Hence, we have n = 2|T ||P | + |T |

variables, where |T | represents the number of tenants, and |P |
represents the number of PMs in the data center. By setting
δ = 1, the time complexity of Step 1 becomes O((2|T ||P |+
|T |)2+1/6 log(2|T ||P | + |T |)). In Step 2, we iterate over
the tenants to determine which tenants to serve, the time
complexity is O(|T |). In Step 3, we first initialize an empty
feasible PM set Pt for each tenant t. Then, we iterate over
each PM p to determine whether to insert it into Pt. Hence,
the time complexity of Step 3 is O(|T ||P |). In Step 4,
we iterate over each PM to determine its availability A′p,
the time complexity is O(|P |). In conclusion, the time com-
plexity of our proposed RD-PMA algorithm is O((2|T ||P |+
|T |)2+1/6 log(2|T ||P |+|T |))+O(|T |)+O(|T ||P |)+O(|P |) =
O((2|T ||P |+|T |)2+1/6 log(2|T ||P |+|T |)). □

V. VM PLACEMENT

In this section, we formalize the VM placement (VMP)
problem as an integer linear programming problem. To solve
this problem, we propose an online algorithm and analyze its
competitive ratio.

A. Problem Definition for VMP
By the RD-PMA algorithm as described in Section IV,

on the one hand, we determine which tenants provide services,
i.e., derive the feasible tenant set Tr. On the other hand,
we achieve PM-tenant mapping and derive the feasible PM set
Pt for each tenant t ∈ Tr. It is worth noting that VMs placed
on the set Pt by the tenant t ∈ Tr can satisfy the service avail-
ability requirements. Therefore, when discussing online VM
placement, our objective is to maximize the revenue of CSP,
and constraint is the PM resource constraint. Accordingly, let
fp

t,v denote whether VM v of tenant t is placed on PM p or
not. We formulate the VMP problem as follows:

max
∑
p∈Pt

∑
v∈Vt

∑
t∈Tr

fp
t,v ·Qv

t

S.t.



∑
p∈Pt

fp
t,v ≤ 1, ∀t ∈ Tr, v ∈ Vt∑

t∈Tr

∑
v∈Vt

fp
t,v ·Dv

t ≤ Rp, ∀p ∈ P

fp
t,v ∈ {0, 1}, ∀t ∈ Tr, v ∈ Vt, p ∈ Pt

(5)

The first inequality indicates that each VM v of tenant t can
only be placed on one PM p ∈ Pt at most. The second set of
inequalities describes the resource constraint on each PM. Our
goal is to achieve the maximum revenue in the data center.

Theorem 4: The VMP problem is NP-hard.
Proof: Obviously, the MKP [28] problem is a spe-

cial case of the VMP problem. Since the MKP problem is
NP-hard, VMP is NP-hard too. □

B. Online Algorithm Design for VMP
To solve the problem in Eq. (5), we design a primal-dual

online algorithm for VMP (PD-VMP). At first, similar to the
linear relaxation of Eq. (4), we construct the linear relaxation
of Eq. (5) by replacing the binary variables fp

t,v ∈ {0, 1}
with continuous variables fp

t,v ∈ [0, 1]. Then, we consider the
dual problem for the linear relaxation problem. Let α(t, v)
and β(p) be the dual variables of the first and second set
of inequalities, respectively All these dual variables are non-
negative. The dual problem of VMP can be described as
follows:

min
∑
v∈Vt

∑
t∈Tr

α(t, v)+
∑
p∈P

Rp ·β(p)

S.t.


α(t, v) + β(p)·Dv

t ≥ Qv
t , ∀t ∈ Tr, v ∈ Vt, p ∈ Pt

α(t, v) ≥ 0, ∀t ∈ Tr, v ∈ Vt

β(p) ≥ 0, ∀p ∈ P
(6)

We can rewrite the first constraint of Eq. (6) as:

α(t, v) ≥ Qv
t

(
1− Dv

t

Qv
t

β(p)
)
, ∀t ∈ Tr, v ∈ Vt, p ∈ Pt (7)

The first step of the PD-VMP is to initialize corresponding
constants and all the dual variables. According to the first set
of inequalities in Eq. (6), we define a constant J as follows:

J=max
{
Dv

t

Qv
t

, t ∈ T, v ∈ Vt

}
(8)

In addition, let’s φ = J/ρ, where ρ ∈ (0, 1) is a parameter
provided by PD-VMP, which trades off the optimization
objective of algorithm and the meeting of quality of service
requirements. The second step of PD-VMP is to select an
appropriate PM for each arrival VM placement request. Upon
the arrival of a new request, the algorithm calculates the price
of each candidate PM, which is defined as:

Kp =
Dv

t

Qv
t

· β(p), ∀t ∈ Tr, v ∈ Vt, p ∈ Pt (9)

The PD-VMP algorithm figures out the PM with lowest price,
denoted as Kp∗ . If Kp∗ ≥ 1, the constraints of the dual
program will be violated (see proof of Lemma 5). Then, the
request will be rejected and the corresponding dual variable
α(t, v) will be set as 0. Otherwise, the task will be accepted
and the algorithm will update the dual variables as follows:α(t, v)← Qv

t (1−Kp∗)

β(p∗)← β(p∗)
(

1 +
Dv

t

Rp∗

)
+

Dv
t

φ ·Rp∗

(10)

The PD-VMP algorithm is formally outlined in Algorithm 2.
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Algorithm 2 PD-VMP: Primal-Dual Online Algorithm for
VMP

1: Step 1: Algorithm initialization
2: φ = J/ρ, where ρ ∈ (0, 1)
3: Initialize the dual variables:
α(t, v) = 0,∀t ∈ Tr, v ∈ Vt;β(p) = 0,∀p ∈ P

4: Step 2: On arriving of a VM v ∈ Vt request from
tenant t ∈ Tr

5: for each VM v placement request from tenant t do
6: for each p ∈ Pt do
7: Calculate the price Kp = Dv

t

Qv
t
· β(p)

8: p∗ ← arg minp∈Pt
Kp

9: if Kp∗ < 1 then
10: Place the VM v of tenant t on PM p∗

11: Set α(t, v)← Qv
t (1−Kp∗)

12: Set β(p∗)←β(p∗)
(
1 + Dv

t

Rp∗

)
+ Dv

t

φ·Rp∗
.

13: else
14: Reject the VM v placement request

C. Performance Analysis of PD-VMP
We first prove the feasibility of the proposed PD-VMP

algorithm.
Theorem 5: When the PD-VMP algorithm terminates, the

primal-dual algorithm will not violate the constraints in the
dual program Eq. (6).

Proof: There are two constraints in Eq. (6). On the
one hand, we consider the second set of constraints in
Eq. (6). Initially, all the dual variables are 0, which satisfies the
positivity constraint. When dual variables β(p) are updated,
they will never decrease according to the update rules in
Eq. (10). Besides, the update rule for dual variables, namely
α(t, v)← Qv

t (1−Kp∗), can guarantee that α(t, v) is positive
because only the VM placement request with Kp∗ < 1 will
be accepted. Therefore, the second set of inequalities in
Eq. (6) is satisfied after PD-VMP terminates.

On the other hand, let’s consider the constraints from the
first set of inequalities in Eq. (6). For each VM placement
request, we will determine a suitable PM p∗ with the lowest
price Kp∗ . If it is rejected, according to Line 9 of Algorithm 2,
Kp∗ ≥ 1 and the right side of Eq. (7) will not be positive.
Since the dual variable α(t, v) is nonnegative, the first set of
constraints in Eq. (6) is satisfied. If it is accepted, according
to the update rule of Algorithm 2 and the definition of Kp of
PM p, it follows:

α(t, v) = Qv
t (1−Kp) ≥ Qv

t

(
1− Dv

t

Qv
t

· β(p)
)

(11)

The above inequality is the same as the first set of constraints
in Eq. (6). Moreover, the update of dual variables β(p) will
only make the right side smaller, which will not violate the
constraints. As a result, the first set of constraints in Eq. (6)
is always satisfied as well. □

To evaluate the performance of the proposed algorithm,
we define the competitive ratio as follows [16] and [32].

Definition 1: If an online algorithm achieves at least ζ ·
OPT , where OPT is the result of the optimal solution, and
the constraints are violated at most by a multiplicative factor
η, we call that the online algorithm is [ζ, η] competitive.

Obviously, we expect the performance of PD-VMP is close
to that of the optimal solution, i.e., ζ → 1, and η →
1. However, since the PD-VMP problem is NP-hard, it is
infeasible to reach the above expectation for any polynomial
time algorithm.

Theorem 6: The proposed Algorithm 2 can achieve the
competitive ratio of [1/(1 + ρ), O (log J + log(1/ρ))], where
ρ is an arbitrary parameter with ρ ∈ (0, 1), and J is a system
dependent constant.

Proof: We analyze the approximate ratio based on
comparison with the optimal solution. The detailed proof has
been relegated to Appendix B-B. □

Theorem 7: The time complexity of the Algorithm 2 is
O(|Pt|) for each VM placement request, where |Pt| represents
the number of PMs in the feasible PM set Pt of tenant t
determined by the Algorithm 1.

Proof: The time complexity of the PD-VMP algorithm
can be divided into two parts. In Step 1, we perform an
initialization with a time complexity of O(1). In Step 2, when
a VM v request arrives from a tenant t, we iterate over the
feasible PM set Pt of the tenant. For each candidate PM
p in Pt, we calculate the price Kp and record the lowest
price as Kp∗ . Then, we determine the placement scheme
and update the dual variables based on Kp∗ . Therefore, the
time complexity Step 2 is O(|Pt|), where |Pt| represents the
number of PMs in Pt. In conclusion, for each VM placement
request, the time complexity of the PD-VMP algorithm is
O(1) +O(|Pt|) = O(|Pt|). □

VI. PERFORMANCE EVALUATION

In this section, we first introduce the metrics and bench-
marks for performance comparison. Then, we compare our
algorithm with the state-of-the-art solutions through large-
scale simulations. Finally, we present the experimental results
of a small-scale testbed based on Openstack [33].

A. Performance Metrics and Benchmarks

1) Performance Metrics: We adopt the following three sets
of metrics to evaluate our proposed algorithms.

1) The satisfaction of tenants will affect the revenue of the
CSP. Thus, the first set of metrics includes the number
of dissatisfied days of served tenants, the raw revenue
and the SLA revenue. Specifically, we first measure the
daily failure time of each tenant and calculate the actual
uptime percentage. We next compare the actual uptime
percentage with the SLA target of service availability
to determine whether the tenant is satisfied with the
service of the day. For example, if the actual uptime
percentage of a served tenant’s VMs is 99.9% and the
SLA target is 99.99%, then the tenant is unsatisfied
on that day. Secondly, we calculate the total price of
the resources sold by the CSP when SLAs are not
considered and record it as the raw revenue. In contrast,
we calculate the actual revenue that the CSP ultimately
receives from tenants when considering compensation
for services that fail to meet SLA targets and record it
as the SLA revenue, i.e., the SLA revenue is equal to the
raw revenue minus the service compensation. We refer
to Amazon Compute Service Level Agreement [5] to
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TABLE III
AMAZON COMPUTE-BASED SERVICE LEVEL AGREEMENT [5]. IF THE

SLA TARGET OF A TENANT’S SERVICE AVAILABILITY IS 99.9%, CSP
NEEDS TO REFUND 10% OF THE SERVICE FEE TO THE TENANT

WHEN THE ACTUAL UPTIME PERCENTAGE OF THE TENANT’S
VMS IS LESS THAN 99.9% BUT GREATER THAN 99.8%

calculate the specific service compensation, as shown in
Table III.

2) The second set of metrics includes the abnormal rate of
served tenants, the unavailability of PMs and the number
of affected PMs. Specifically, when many tenants request
services, the CSP may not be able to provide services
for all tenants. Thus, we obtain the abnormal rate µt

of the served tenants and calculate its average value.
As discussed in Section III-A.3, the availability A′p of
a PM p can be calculated by A′p = Ap −

∑
t∈T y

p
t · µt.

Thus, we obtain the unavailability of a PM p by 1−A′p =
1 − Ap +

∑
t∈T y

p
t . Additionally, when a tenant is an

abnormal tenant, the attacks it launches may affect all
the PMs serving it. Therefore, we measure the number
of PMs that each tenant t maps to and record the value
as the number of affected PMs, i.e.,

∑
p∈P y

p
t .

3) Abnormal tenants may affect the performance of the
network. Thus, we adopt the round-trip time (RTT), the
packet loss rate and the flow completion time (FCT) as
the third set of metrics. Specifically, we adopt iPerf3
[34] tool to measure the FCT of each served tenant, use
ping tool to measure the RTT and packet loss rate of
each PM.

2) Benchmarks: We divide SAG-VMP into two subprob-
lems: PMA and VMP. Accordingly, we propose the RD-PMA
algorithm for PMA and the PD-VMP algorithm for VMP. For
simplicity, we denote the combined algorithm for SAG-VMP
as RD+PD. We choose three benchmarks to compare with
RD+PD. The first benchmark is the NOVA schedule scheme
employed by OpenStack [35]. Upon receiving a VM placement
request, a filtering algorithm is used to obtain a list of
candidate PMs that possess the necessary resources and meet
the VM requirements. Subsequently, a weighting algorithm is
applied to rank the PMs and select the most suitable one.
By default, the lower the load of the PM, the higher the rank-
ing. The second benchmark is the rounding-based algorithm
for VM placement that can alleviate the impact of abnormal
events, called R-VMP-AI [16]. R-VMP-AI strategically limits
the number of PMs allocated to each tenant and the number
of tenants hosted per PM by setting thresholds derived from
historical data (see detial in Section VI-B.1). This reduces
the impact of malicious tenants and VM failures, improving
service availability. However, R-VMP-AI lacks quantification
of the impact of abnormal events on availability, and does not
consider VM placement based on tenant SLA.

TABLE IV
MULTIPLE VM INSTANCES WITH DETAILED RESOURCES DEMAND AND

PRICES FROM AMAZON EC2 CLOUD [36], [37]

The last benchmark is the delay-sensitive and reliable place-
ment (DSR) algorithm [15]. To minimize the number of PMs
used, DSR assigns PMs to VMs sequentially until all VMs are
hosted without violating the VM availability constraint. DSR
is a heuristic algorithm that uses the hardware availability of
PMs to measure service availability but does not take into
account the unavailability caused by tenant uncertainty.

B. Simulation Evaluation
1) Simulation Settings: Simulations are conducted on two

practical topologies: the Koala-Based cloud [16] and the
Google-Based cloud [20]. The Koala-Based cloud is a
small-scale data center comprising 480 PMs. It focuses on
individual tenants, with a default of 960 tenants who create
1-10 VM instances randomly. The Google-Based cloud, on the
other hand, is a large-scale data center with 10,047 PMs.
It mainly accommodates enterprise tenants, with the number
of tenants set as 2,000 by default, and each tenant randomly
creates 1-100 VM instances. In the benchmark, R-VMP-AI
requires the CSP to set two appropriate thresholds: each PM
can serve a maximum of h tenants, and each tenant’s VM
can be deployed on up to w PMs. Following the sugges-
tion of Zhao et al. [16], the Koala-Based cloud sets h to
10 and w to 4, while the Google-Based cloud sets h to
10 and w to 40. To define the SLAs for the tenants, two
different types are generated based on the Amazon Compute
Service Level Agreement [5], as shown in Table III. For the
VM instances, we generate three different types: standard
(m5), computing-optimized (c5), and memory-optimized (r5),
as shown in Table IV. These instance types are sourced from
the Amazon EC2 cloud [36], [37], each with varying resource
requirements (vCPU, RAM) and prices. For each tenant, their
SLA and VM placement requests are randomly generated
according to Tables III and IV, respectively. Notably, the
probability of a tenant being abnormal follows a log-normal
distribution, which effectively models real-world cyber attack
magnitudes [38], [39]. A report [40] indicates that there are
currently over 166,000 registered hackers worldwide, with
an annual growth rate of approximately 10 percent. This
suggests an average of one hacker for every 40,000 people
in the population. Hence, the median of the distribution is
set to 0.25 per ten thousand. In addition, for each PM node,
we assume it has 64 CPU cores and 256GB RAM. Consistent
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Fig. 2. Average number of dissatisfied days of served tenants vs. Total service
time.

Fig. 3. CDF of the number of dissatisfied days of served tenants.

Fig. 4. Raw revenue of CSP vs. Number of tenants.

with previous studies [41], [42], the hardware availability of
each PM is randomly chosen from the set {99.95%, 99.99%,
99.995%, 99.999%}. We run each simulation for 30 trials, and
the average results are shown.

2) Simulation Results: We run seven sets of simulations to
evaluate the performance of the RD+PD algorithm against the
other three benchmarks. The first set of simulations compares
tenant satisfaction by changing the total service time under
different algorithms and the results are shown in Figs. 2-3.
We compare tenant satisfaction by calculating the average
number of dissatisfied days of all served tenants in one year.
Fig. 2 indicates that for all algorithms in both topologies,
the number of dissatisfied days gradually increases with the
number of days that tenants are served. We claim that RD+PD
can reduce the number of dissatisfied days. For example, the
average number of dissatisfied days per tenant in a year for
our proposed algorithm is 0.9 days. In comparison, the average
number of dissatisfied days are 10.3, 99.1 and 61.4 days for
DSR, NOVA and R-VMP-AI, respectively. Fig. 3 shows the
CDF of the number of dissatisfied days. We observe that the
number of dissatisfied days of all tenants is less than 15 days
by using the RD+PD algorithm, which is more than 200 by
adopting other benchmarks. This remarkable improvement can
be attributed to our proposed algorithm’s comprehensive con-
sideration of service availability, encompassing both hardware
availability and tenant uncertainty.

The second set of simulations compares the revenue of CSP
by changing the number of tenants in clouds. In Figs. 4-5, with
the increasing number of tenants, the raw revenue and the SLA
revenue of CSP increase for all algorithms in both topologies.

Fig. 5. SLA revenue of CSP vs. Number of tenants.

Fig. 6. Average abnormal rate of served tenants vs. Number of tenants.

Fig. 7. CDF of the abnormal rate of served tenants.

Specifically, RD+PD achieves a similar performance in terms
of the raw revenue compared to the other three benchmarks.
In comparison, the proposed RD+PD algorithm can obtain
a maximum SLA revenue of $1395/h in the Koala-Based
cloud, while DSR, R-VMP-AI and NOVA can obtain SLA
revenue of $1093/h, $985/h and $915/h, respectively. In other
words, RD+PD can improve SLA revenue by about 27.6%,
41.6% and 52.4% compared with DSF, R-VMP-AI and NOVA,
respectively. The reason is that we take into account the impact
of tenant uncertainty on service availability and design an
efficient algorithm to maximize the revenue of the CSP.

The third set of simulations compares the abnormal rate of
served tenants by changing the number of tenants in clouds
and the results are shown in Figs. 6-7. Fig. 6 shows that the
average abnormal rate of our algorithm gradually decreases
as the number of tenants increases, and is lower than other
benchmarks. In comparison, the average abnormal rate of other
benchmarks changes steadily. For example, when there are
960 tenants in the Koala-Based cloud, the average abnormal
rate of served tenants is 0.33‱ by adopting RD+PD, while
is about 0.43‱ by using other benchmarks. This is because
when there are a large number of tenants, it is impossible
to meet the VM placement requests of all tenants due to
the resource constraint of the cloud. Our algorithm will first
provide services to the tenants with good behavior in the
history and high credit level (i.e., tenants with lower abnormal
rate), so the abnormal rate of the served tenants will gradually
decrease with the increase of the number of tenants. Fig. 7
shows the CDF of the abnormal rate of served tenants.
We observe that by adopting RD+PD, the abnormal rate of
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Fig. 8. Average unavailability of PMs vs. Number of tenants.

Fig. 9. CDF of the unavailability of PMs.

Fig. 10. The maximum number of PMs that a tenant can affect vs. Number
of tenants.

all served tenants less than 1.5‱ while the abnormal rate
using other benchmarks can be greater than 3.0‱.

The fourth set of simulations compares the unavailability of
PMs by changing the number of tenants in clouds. As shown
in Fig. 8, the unavailability of PMs for all algorithms in
both topologies increases as the number of tenants increases.
For instance, in the Koala-Based cloud with 960 tenants, the
unavailability of PMs is 1.83‱ when employing RD+PD.
In comparison, DSR, NOVA, and R-VMP-AI have unavail-
ability values of 4.16‱, 4.10‱, and 2.81‱, respectively.
Fig. 9 shows the CDF of the unavailability of PMs. It is easy to
observe that by using our proposed algorithm, the unavailabil-
ity of all PMs is less than 6‱. In comparison, the unavail-
ability of PMs using other benchmarks can be larger than
10‱. The reason is that RD+PD will take into account the
tenant abnormal rate during VM deployment and minimize the
impact of the tenant abnormal rate on PM availability.

The fifth set of simulations compares the number of PMs
that a tenant can affect by changing the number of tenants in
clouds. As shown in Fig. 10, with the increasing number of
tenants, the maximum number of PMs that a tenant can affect
increases for all algorithms in both topologies, and RD+PD
can affect fewer PMs than other algorithms. For example,
when there are 2000 tenants in the large topology, the results
of NOVA, DSR, R-VMP-AI and RD+PD are 100, 98, 40 and
32, respectively. That means, RD+PD reduces the maximum
number of PMs a tenant can affect by 68%, 67.3% and 20%
compared with NOVA, DSR and R-VMP-AI, respectively.
Figure 11 further illustrates that both RD+PD and R-VMP-
AI ensure that the number of affected PMs remains below 40.

Fig. 11. CDF of the number of PMs that a tenant can affect.

Fig. 12. SLA revenue of CSP under different tenants abnormal rate.

Fig. 13. Execution time vs. Number of tenants.

In contrast, other benchmarks result in more than 80 affected
PMs. The reason behind these results is that RD+PD takes
into account the impact of tenant uncertainty to ensure the
service availability, the number of tenants deployed on each
PM is not excessive. R-VMP-AI adopts a similar approach to
alleviate the impact of abnormal events in the cloud by setting
thresholds.

In the sixth set of simulations, we delve into the sensitivity
analysis of our proposed approach, which is a fundamental
step in understanding the impact of input data variations on
the model’s optimal value [43]. Specifically, we focus on
the abnormal rate of tenants in the cloud, a crucial param-
eter beyond the control of the CSP. Building upon previous
works [43], [44], we conduct sensitivity analysis by adjusting
this parameter. We vary the average abnormal tenant rate and
observe the evolution of the CSP’s SLA profit as the number
of tenants increases, as shown in Fig. 12. The experimental
results demonstrate that our method ensures a relatively stable
SLA profit for the CSP, even when faced with fluctuations
in tenant anomaly rates. For example, in the Google-Based
Cloud with 1600 tenants, varying average abnormal rates
of 0.02%, 0.025%, 0.003%, and 0.035% respectively, yield
SLA profits of 27.96k, 27.12k, 26.60k, and 26.04k$/h.
These findings underscore the effectiveness of our approach
in addressing scenarios involving malicious tenants in the
cloud.

In the final set of simulations, we examine the exe-
cution time of our proposed approach, as illustrated in
Fig. 13. The PD-VMP algorithm demonstrates remarkable
problem-solving capabilities by providing suitable VM place-
ment solutions within seconds. As for the RD-PMA algorithm,
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in a Koala-Based Cloud with 960 tenants, the algorithm
completes within 128s. Similarly, in a Google-Based Cloud
with 2,000 tenants, the completion time is 5,389s. It is
worth mentioning that in Step 1 of the RD-PMA algorithm,
we utilize the Cplex solver [29] with default settings on a
small server to solve the linear programming (LP) problem.
Consequently, a significant portion of the execution time of the
RD-PMA algorithm is allocated to Step 1. For instance, in the
Google-Based Cloud scenario, this task consumes over 5,200s.
In large-scale commercial clouds, significant optimization can
be achieved through techniques such as parallelization on
multiple cores. This enables the solution of LP problems
with tens of thousands of variables and constraints, similar
to the scale of our Google-Based Cloud scenario, within a
few minutes [45], [46]. Considering that RD-PMA operates
over long-term intervals and has low real-time performance
requirements, this timeframe is acceptable.

C. Testbed Evaluation
1) Testbed Settings: To better evaluate RD+PD, we choose

OpenStack [33], a widely used cloud infrastructure software,
to implement our small-scale testbed. Specifically, we deploy
the latest version of OpenStack called Zed [47] on a cluster
of 15 PMs. Each PM is equipped with Ubuntu 22.04 OS,
two AMD Ryzen 9 3950X CPUs (16)-core, 32-thread) [48],
256GB of RAM, and a 1Gbps network bandwidth. In our
experimental setup, we initially deploy VM requests for
13 normal tenants, with each tenant randomly generating
1-10 VM placement requests from Table II. We use iPerf3
[34] to generate service requests of tenants. Then we deploy
an abnormal tenant who generates 9 VM placement requests
by default in the cloud. Once the VM placement phase is com-
plete, the abnormal tenant initiates DoS attacks using hping3
[49]. We assess the impact of the DoS attacks by measuring the
number of affected PMs and tenants. Additionally, we collect
data on the round-trip time (RTT) and packet loss rate of each
PM, as well as the flow completion time (FCT) for each tenant.
It is worth noting that for R-VMP-AI, following the suggestion
of Zhao et al. [16], we restrict the number of tenants served
by each PM to a maximum of 6, with each tenant’s VM being
deployed on no more than 3 PMs.

2) Testbed Results: We run three sets of experiments to
evaluate the performance of our proposed algorithm and
benchmarks. In the first set of experiments, we observe the
number of affected PMs and tenants by changing the number
of VMs of the abnormal tenant. It is obvious that RD+PD can
achieve the best performance among all algorithms. As shown
in Fig. 14, when the abnormal tenant deploys 9 VMs, the
number of affected PMs by adopting RD+PD is 1. While
using NOVA, R-VMP-AI and DSR, the number are 8, 3 and 8,
respectively. That means, RD+PD can reduce the number of
affected PMs by 87.5%, 66.7% and 87.5% compared with
NOVA, R-VMP-AI and DSR, respectively. In Fig. 15, when
the abnormal tenant deploys 9 VMs, the number of affected
tenants is 2 by adopting our proposed algorithm. While using
NOVA, R-VMP-AI and DSR, the number are 12, 7 and 13,
respectively. In other words, RD+PD can reduce the number
of affected tenants by 83.3%, 71.4% and 84.6% compared with
NOVA, R-VMP-AI and DSR, respectively. The reason is that
RD+PD takes into account the impact of the tenant uncertainty

Fig. 14. Number of affected PMs vs. Number of VMs of abnormal tenant.

Fig. 15. Number of affected tenants vs. Number of VMs of abnormal tenant.

Fig. 16. Average RTT vs. Number of VMs of abnormal tenant.

Fig. 17. CDF of the RTT.

on the service availability, so the number of tenants deployed
on each PM is not excessive.

The second set of experiments measures the performance
of each PM in the cloud when an abnormal tenant launches
DoS attacks. In Fig. 16, we demonstrate the average RTT of
traffic on each PM by changing the number of VMs of the
abnormal tenant. We observe that RD+PD always achieves
the least average RTT among all comparison algorithms when
the number of VMs of abnormal tenant is larger than 1.
For example, when the abnormal tenant deploys 9 VMs, the
average RTT are 9.9ms, 6.1ms, 9.8ms and 2.5ms correspond-
ing to NOVA, R-VMP-AI, DSR and RD+PD, respectively.
That means, RD+PD reduces the average RTT by 74.7%,
59.0% and 74.4% compared with NOVA, R-VMP-AI and
DSR, respectively. Fig. 17 shows the CDF of RTT when the
number of VMs of abnormal tenant is 9. We obtain that the
proportion of PMs with RTT below 3ms is 46.7%, 66.7%,
46.7% and 86.7% corresponding to NOVA, R-VMP-AI, DSR
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Fig. 18. Average packet loss rate vs. Number of VMs of abnormal tenant.

Fig. 19. CDF of the packet loss rate.

Fig. 20. Average FCT vs. Number of VMs of abnormal tenant.

and RD+PD, respectively. As shown in Fig. 18, we measure
the packet loss rate for traffic on each PM and show the
average results. When the number of VMs of abnormal tenant
is 9, RD+PD can reduce the average packet loss rate by
86.8%, 63.4% and 86.1% compared with NOVA, R-VMP-AI
and DSR, respectively. Fig. 19 shows the CDF of the packet
loss rate when the number of VMs of abnormal tenant is
9. It is clear that RD+PD can achieve the best performance
among the four algorithms since 93.3% of PMs never suffer
packet loss. From the above experimental results, we know
that RD+PD can control the number of PMs that a tenant can
deploy. Therefore, when an abnormal tenant sends abnormal
traffic, RD+PD can limit the number of affected PMs and
achieve better network performance (e.g., smaller RTT and
lower packet loss rate).

Finally, we measure the FCT of each tenant since all tenants
expect their traffic to be handled as soon as possible. To mea-
sure the FCT performance, each tenant generates 100 flows
and sends them to their VM instances. These flows satisfy
the 2/8 distribution, of which 20 flows are elephant flows,
accounting for 80% traffic, and the remaining 80 mice flows
accont for 20% traffic [50]. In Fig. 20, when the abnormal
tenant deploys 9 VMs, RD+PD can reduce the average
FCT by 47.9%, 32.6% and 46.3% compared with NOVA,
R-VMP-AI and DSR, respectively. Fig. 21 shows the CDF
of FCT when the number of VMs of abnormal tenant is 9.
We obtain the proportion of flows with FCT below 200ms
is 42.8%, 66.7%, 42.8% and 92.8% corresponding to NOVA,

Fig. 21. CDF of the FCT.

R-VMP-AI, DSR and RD+PD, respectively. This is because
the number of PMs attacked by the abnormal tenant is reduced
in RD+PD, consequently, the number of affected flows also
decreases.

VII. CONCLUSION

This paper considers the service availability in terms of
both the hardware availability and the tenant uncertainty, and
studies the problem of service availability-guaranteed VM
placement in multi-tenant clouds (SAG-VMP). To efficiently
solve this complex problem, we take a two-phase approach:
PM assignment and VM placement. Two algorithms with
bounded approximation factors have been designed to for these
two phases, respectively. Both small-scale experiment results
and large-scale simulation results show the high efficiency of
our proposed algorithms.

APPENDIX A
DISCUSSION

A. Energy Consumption
Energy consumption is a crucial issue of cloud computing.

We employ two approaches to effectively reduce the energy
consumption of data centers:

1) Our primary objective is to maximize CSP revenue by
optimizing the utilization of PM resources. By efficiently
utilizing data center PMs, we can minimize the number
of PMs required for service deployment, leading to a
reduction in overall energy consumption.

2) Our paper effectively ensures the service availability
of tenants by comprehensively considering hardware
availability and tenant uncertainty. By prioritizing ser-
vice availability, our solution can effectively reduce
the frequency of VM migration in data centers caused
by service unavailable, ultimately reducing energy con-
sumption in the data center.

B. Live Migration
Our proposed method supports live migration operations.

For example, when there is a need to migrate VM v of tenant
t from the current PM p to another PM, our method involves
two steps:

1) Migration Decision: In this step, we create a new VM
called v∗ with the same specifications as the VM v on
another PM as the migration target. This decision is
made by running a modified PD-VMP algorithm. Specif-
ically, we update Line 8 of the PD-VMP algorithm from
p∗ ← arg minp∈Pt

Kp to p∗ ← arg minp∈{Pt−{p}}Kp.
Then, we execute Step 2 of the PD-VMP algorithm to
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determine the optimal VM migration target p∗. Finally,
we create VM v∗ on PM p∗.

2) Migration Execution: In this step, we synchronize the
configuration and data of v to v∗. Once synchroniza-
tion is complete, we perform configuration and data
consistency verification. After successful verification,
we migrate the tenant’s business traffic from v to v∗

and delete the VM v.

C. Handling PM Crash and Loss
When a PM crashes while running VMs, it may destroy

VMs and potentially violate the tenants’ SLA. We address
this issue by migrating the affected VMs to other available
PMs within the data center. The process of VM migration
is elaborated in Appendix A-B. It is worth noting that our
proposed algorithm serves as a complementary solution based
on existing methods. Therefore, it can be integrated with
existing PM failure response strategies, such as the failure
prediction technique in [14], to minimize disruptions and
ensure a seamless transition, thereby reducing the impact on
the SLA for tenants.

If the system detects the loss of PM p during runtime,
we update the set of feasible PMs Pt = Pt − {p}, ∀t ∈ Tr.
This ensures that subsequent VM deployments are not placed
on PM p. Additionally, we report the PM loss information to
the management plane, which triggers the migration process
for the VMs on PM p.

APPENDIX B
PROOF DETAILS

A. Proof of Theorem 2
In this section, we give the upper bound of the Algorithm 1

that may violate the constraints, analyze the approximate
ratio based on the randomized rounding method [16], [30].
As preliminary knowledge, we give a famous theorem for
approximate performance analysis.

Theorem 8 (Chernoff Bound): Given n independent vari-
ables: a1, a2, . . . , an, where ∀ai ∈ [0, 1]. Let κ = E [

∑n
i=1 ai].

Then, we have Pr[
∑n

i=1 ai ≥ (1 + ϵ)κ] ≤ e
−ϵ2κ
2+ϵ and

Pr[
∑n

i=1 ai ≤ (1−σ)κ] ≤ e−σκ/2, where ϵ and σ are arbitrary
positive values.

Lemma 9: In RD-PMA, we have E [ẑt] = z̃t, E [ŷp
t ] = ỹp

t

and E [x̂p
t ]= x̃

p
t .

Proof: According to the operation in the second step
of KR-PD, we have Pr [ẑt = 1] = z̃t,∀t ∈ T . Obviously,
it follows that:

E [ẑt]= Pr [ẑt =1]·1+Pr [ẑt =0]·0= z̃t (12)

Based on the definition of condition probability, it is easy to
see that:

Pr [ŷp
t = 1] = Pr [ŷp

t = 1|ẑt = 1] Pr [ẑt = 1]
+ Pr [ŷp

t = 1|ẑt = 0] Pr [ẑt = 0]

=
ỹp

t

z̃t
· z̃t = ỹp

t , ∀t ∈ T, p ∈ P (13)

Similar to Eq. (12), we obtain:

E [ŷp
t ]= Pr [ŷp

t =1]·1+Pr [ŷp
t =0]·0= ỹp

t

E [x̂p
t ]= Pr [ŷp

t =1]· x̃
p
t

ỹp
t

+Pr [ŷp
t =0]·0 = ỹp

t ·
x̃p

t

ỹp
t

= x̃p
t

(14)

□
Assume that the minimum resource capacity of all PMs is

Rmin
p . We define a variable γ as follows:

γ = min

{
Rmin

p

Dt
, t ∈ T

}
(15)

Theorem 10: RD-PMA can achieve the approximation fac-
tor of log n

γ + 1 for PM resource constraints in a data center,
where n denotes the number of PMs.

Proof: Using the randomized rounding method, for each
tenant t ∈ Tr, CSP will determine whether each PM p ∈ P
provides services to the tenant t (ŷp

t = 1) or not (ŷp
t = 0).

We use a variable ϕp
t to denote the PM resource consumption

when the tenant t ∈ T is served by PM p ∈ P .

ϕp
t =

{
Dt, with probability of x̃p

t

0, otherwise
(16)

According to the definition, {ϕp
t } are mutually independent.

Combining Lemma 9, the resource consumption for one PM
node p is:

E

[∑
t∈T

ϕp
t

]
=

∑
t∈T

E [x̃p
t ·Dt] ≤ Rp (17)

Combining Eq. (17) and the definition of γ in Eq. (15),
we have: 

ϕp
t · γ
Rp

∈ [0, 1]

E

[∑
t∈T

ϕp
t · γ
Rp

]
≤ γ

(18)

Then, by applying Chernoff Bound, assume that ϵ is an
arbitrary positive value. It follows:

Pr

[∑
t∈T

ϕp
t · γ
Rp

≥ (1 + ϵ) · γ

]
≤ e

−ϵ2γ
2+ϵ ⇒

Pr

[∑
t∈T

ϕp
t

Rp
≥ (1 + ϵ)

]
≤ e

−ϵ2γ
2+ϵ ≤ 1

n
(19)

where n denotes the number of PM nodes, and 1
n is a value

close to zero. By solving the above inequality, we have

ϵ ≥ log n+
√

log2 n+ 8γ log n
2γ

⇒ ϵ ≥ log n
γ

(20)

Thus, the approximate factor for PM resource constraints is
ϵ+ 1 = log n

γ + 1.
□

Assume that the minimum hardware availability of all PMs
is denoted by Amin

p . We define a variable τ as follows:

τ = min

{
Amin

p

µt
, t ∈ T

}
(21)
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Theorem 11: RD-PMA can achieve the approximation fac-
tor of log n

τ + 1 for service availability constraints in a data
center, where n denotes the number of PMs.

Proof: Combining the fourth and fifth inequalities in
Eq. 4, we have

∑
t∈T y

p
t · µt ≤ Ap. We use a variable ψp

t to
denote the impact of PM availability due to tenant uncertainty
when the tenant t ∈ T is served by PM p ∈ P .

ψp
t =

{
µt, with probability of ỹp

t

0, otherwise
(22)

According to the definition, {ψp
t } are mutually independent.

Combining Lemma 9, the availability due to tenant uncertainty
for one PM p is:

E

[∑
t∈T

ψp
t

]
=

∑
t∈T

E [ỹp
t · µt] ≤ Ap (23)

Combining Eq. (23) and the definition in Eq. (15), we have:
ψp

t · τ
Ap

∈ [0, 1]

E

[∑
t∈T

ψp
t · τ
Ap

]
≤ τ

(24)

Then, similar to Eqs. (19)-(20), we can conclude that the
approximate factor of the service availability for VMs on PM
p is log n

τ + 1. □
Theorem 12: Suppose OLP is the optimal objective value

to the relaxed version of Eq. (4), while OR is the objective
value of Eq. (4) associated with the RD-PMA algorithm.
We have Pr[OR ≤ (1 − σ)OLP ] ≤ e−σOLP /2, which means
the objective value OR derived by RD-PMA is close to the
optimal value OLP with a high probability.

Proof: From the analysis in Lemma 9, we have E [ẑt]=
z̃t. Accordingly,

E[OR] =
∑
t∈T

ẑt ·Qt =
∑
t∈T

z̃t ·Qt = OLP (25)

Then, we have e−σE[OR]/2 = e−σOLP /2. Based on Theorem 8,
we have:

Pr[OR ≤ (1− σ)E[OR]] ≤ e−σE[OR]/2 (26)

Combining the above discussions, we conclude that:

Pr[OR ≤ (1− σ)OLP ] ≤ e−σOLP /2 (27)

Thus, the objective value OR derived by RD-PMA is close to
the optimal value OLP with a high probability. □

Approximation Factors: From the above theorems,
RD-PMA can achieve the approximation factor of log n

γ + 1
for the PM resource constraint in a data center. Meanwhile,
the service availability constraint will hardly be violated by a
factor of log n

τ + 1. It means that the RD-PMA algorithm can
achieve the optimal solution, violating the PM capacity by at
most a factor log n

γ + 1, violating the service availability of
tenant by at most a factor log n

τ + 1. Thus, we can conclude
that RD-PMA can achieve the bi-criteria approximation of(

log n
γ + 1, log n

τ + 1
)

.

B. Proof of Theorem 6

In the following, we will prove the competitive ratio of
PD-VMP is [1/(1 + ρ), O (log J + log(1/ρ))].

Lemma 13: The optimization objective of our proposed
PD-VMP algorithm is at least 1/(1 + ρ) times OPT, where
OPT is the result of the optimal solution.

Proof: When a VM v of tenant t is placed on PM p∗,
the objective value of the linear program increases by Qv

t .
To avoid the confusion, let α′(t, v) and β′(p) denote the values
of α(t, v) and β(p) after the VM v of tenant t is placed,
respectively.

According to the update rules of dual variables in
Algorithm 2, the objective value of the dual program increases
by ∆:

∆ =
∑
v∈Vt

∑
t∈Tr

(α′(t, v)−α(t, v)) +
∑
p∈P

Rp ·(β′(p)−β(p))

≤ α′(t, v)+ (β′(p∗)−β(p∗))·Rp∗

= Qv
t (1−Kp∗)+Rp∗

{[
β(p∗)

(
1+

Dv
t

Rp∗

)
+

Dv
t

φ ·Rp∗

]
−β(p∗)

}
= Qv

t

(
1− Dv

t

Qv
t

· β(p∗)
)

+
(
β(p∗) ·Dv

t

Rp∗
+

Dv
t

φ ·Rp∗

)
Rp∗

= Qv
t +

Dv
t

φ
= Qv

t +
Dv

t ρ

J

≤ (1 + ρ)Qv
t (28)

The second inequality holds because for each VM request,
it is placed on only one PM. The last inequality holds due to
the definition of J in Eq. (8). In conclusion, our algorithm
increases the objective of the dual algorithm by at most
(1 + ρ)Qv

t . As a result, the overall objective value of the dual
program is at least 1/(1 + ρ) times as that of the optimal
solution. □

In the following, we consider the violation extent of the
resource constraint on each VM placement request. For ease
of presentation, Let V = ∪t∈TVt, and vk(k ≤ |V |) denote
the k-th VM placement request. In addition, let G(p, k) and
β(p, k) denote the load on PM p and the value of β(p) after
VM placement request vk has been processed, respectively.

Lemma 14: For each VM placement request vk, and its
assigned PM p, we have

β(p, k) ≥exp [G(p, k)/Rp]− 1
φ

(29)

Proof: We prove the lemma by the induction of request
vk, k = 1, 2, . . . , |V |. In the initial stage of the algorithm,
β(p, 0) = G(p, 0) = 0 for all PM p. Thus, the inequalities
hold. Note that the value of β(p, k) will be updated during the
running of Algorithm 2. For each arrival request vk, if vk is
rejected, two variables G(p, k) and β(p, k) will not be updated,
i.e., G(p, k) = G(p, k − 1) and β(p, k) = β(p, k − 1). Thus
the inequality holds as well. If request vk is accepted, we have
G(p, k) = G(p, k− 1) +Dv

t . According to the update rule of
β(p, k) in Eq. (10), we also have

β(p, k) = β(p, k − 1)
(

1 +
Dv

t

Rp

)
+

Dv
t

φ ·Rp
(30)
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Based on induction hypothesis, we apply inequality β(p, k −
1) ≥ exp[G(p,k−1)/Rp]−1

φ to Eq. (15) and obtain:

β(p, k) ≥ exp (G(p, k − 1)/Rp)− 1
φ

(
1 +

Dv
t

Rp

)
+

Dv
t

φ ·Rp

=
1
φ

[
exp

(
G(p, k − 1)

Rp

) (
1 +

Dv
t

Rp

)
− 1

]
≈ 1
φ

[
exp

(
G(p, k − 1)

Rp

)
exp

(
Dv

t

Rp

)
− 1

]
=

exp (G(p, k)/Rp)− 1
φ

(31)

Here we apply the first order approximation, exp(x) ≈ 1 + x
for a small positive value x. Strict inequality can be established
by a more complicated update rule and incurs unnecessary
complexity. As a result, this lemma holds. □

The following lemma guarantees the performance of
PD-VMP in terms of the resource constraint on each PM node.

Lemma 15: The proposed PD-VMP algorithm will not vio-
late the resource constraint by a factor of O (log J + log(1/ρ))
on each PM node.

Proof: According to Algorithm 2, the value of βp will
be updated only if Kp∗ ≤ 1 (the request will be accepted in
Line 9 of Algorithm 2). Combinning the Eq. (7), we observe
that if a PM p satisfies β(p) > 1, the VM placement request
v will be rejected on this PM. This means that before the last
update of β(p), we have β(p) ≤ 1. According to the update
rule of β(p) in Line 12 of Algorithm 2 and the definition of
J in Eq. (8), we obtain

β(p) ≤ 1 +
Dv

t

Rp
+

Dv
t

φ ·Rp
≤ 1 + 2J (32)

By Eq. (29) in Lemma 14, we have

G(p, k)
Rp

≤ log ((1 + 2J) · φ+ 1)=O
(

log J + log
1
ρ

)
(33)

□
Combining Lemmas 13 and 15, we prove the proposed

PD-VMP algorithm can achieve the competitive ratio of
[1/(1 + ρ), O (log J + log(1/ρ))], where ρ is an arbitrary
parameter with ρ ∈ (0, 1), and J is a system dependent
constant.
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