
InArt: In-Network Aggregation with Route Selection for
Accelerating Distributed Training

Jiawei Liu
Yutong Zhai

Gongming Zhao
liujiawei@mail.ustc.edu.cn
zyt1996@mail.ustc.edu.cn
gmzhao@ustc.edu.cn

School of Computer Science and Technology, University of
Science and Technology of China

Suzhou Institute for Advanced Research, University of
Science and Technology of China

Hongli Xu
Jin Fang

xuhongli@ustc.edu.cn
fangjin98@mail.ustc.edu.cn

School of Computer Science and Technology, University of
Science and Technology of China

Suzhou Institute for Advanced Research, University of
Science and Technology of China

Zhen Zeng
Arizona State University

zzeng22@asu.edu

Ying Zhu
School of Computer Science and Technology, University of

Science and Technology of China
isaaczhu@mail.ustc.edu.cn

ABSTRACT
Deep learning has brought about a revolutionary transformation in
network applications, particularly in domains like e-commerce and
online advertising. Distributed training (DT), as a critical means
to expedite model training, has progressively emerged as a key
foundational infrastructure for such applications. However, with
the rapid advancement of hardware accelerators, the performance
bottleneck in DT has shifted from computation to communica-
tion. In-network aggregation (INA) solutions have shown promise
in alleviating the communication bottleneck. Regrettably, current
INA solutions primarily focus on improving efficiency under the
traditional parameter server (PS) architecture and do not fully ad-
dress the communication bottleneck caused by limited PS ingress
bandwidth. To bridge this gap, we propose InArt, the first work
to introduce INA with routing selection in a multi-PS architecture.
InArt employs a multi-PS architecture to split DT tasks among mul-
tiple PSs, and selects appropriate routing schemes to fully harness
INA capabilities. To accommodate traffic dynamics, InArt adopts a
two-phase approach: splitting the training model among multiple
parameter servers and selecting routing paths for INA. We pro-
pose Lagrange multiplier and randomized rounding algorithms for
these phases, respectively. We implement InArt and evaluate its
performance through experiments on physical platforms (Tofino
switches) and Mininet emulation (P4 Software Switches). Experi-
mental results show that InArt can reduce communication time by
48%∼ 57% compared with state-of-the-art solutions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00
https://doi.org/10.1145/3589334.3645394

CCS CONCEPTS
• Networks→ In-network processing; • Computing method-
ologies →Machine learning.

KEYWORDS
Web Infrastructure, Distributed Training, In-Network Aggregation,
Route Selection, Programmable Switches
ACM Reference Format:
Jiawei Liu, Yutong Zhai, Gongming Zhao, Hongli Xu, Jin Fang, Zhen Zeng,
and Ying Zhu. 2024. InArt: In-Network Aggregation with Route Selection for
Accelerating Distributed Training. In Proceedings of the ACMWeb Conference
2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore. 11 pages. https:
//doi.org/10.1145/3589334.3645394

1 INTRODUCTION
Over the past decade, deep learning (DL) has become an essential
component of many web applications [13, 14, 33, 43]. It plays a cru-
cial role in domains such as e-commerce [13], social media [14], and
online advertising [43], enabling the development of personalized
recommendation systems, content analysis, and targeted advertis-
ing. The success of DL solutions lies in their sophisticated models,
which contain numerous parameters and are trained on substantial
amounts of data [34, 37]. However, training such models is time-
consuming and computationally demanding. For instance, training
a BERT model with 110 million parameters on a single server takes
over 1.5 months [18]. To address this bottleneck and expedite model
training, the adoption of DT is widespread in web infrastructure
[34, 37, 42]. By harnessing the power of DT, web applications can
efficiently process large datasets and leverage advanced DL models
to deliver high-quality predictions and decision-making.

Following the typical PS architecture [26, 27], a DT system usu-
ally consists of a PS andmultiple workers that performmany rounds
of iterative training. In each iteration, workers compute a local
gradient and send it to the PS for aggregation. The above two pro-
cesses are called gradient computation and gradient aggregation,

https://doi.org/10.1145/3589334.3645394
https://doi.org/10.1145/3589334.3645394
https://doi.org/10.1145/3589334.3645394

WWW ’24, May 13–17, 2024, Singapore, Singapore Jiawei Liu, et al.

respectively [29]. On the one hand, the rapid development of hard-
ware accelerators (e.g., GPU and FPGA) can significantly improve
computing speed. On the other hand, considering that DL models
employed in web applications often possess a substantial number
of parameters, (e.g., BERT [18] with about 110 million parameters,
widely used in online advertising), the DT will introduce several
gigabytes of data transfers. As a result, the performance bottleneck
of DT has shifted from computation to communication [29, 32, 37].
For example, for training the DT job of BERT on 10Gbps links, more
than half of the DT time is spent on communication [37].

To alleviate the communication bottleneck in DT, previous works
usually focus on gradient compression [10, 11, 15] or communica-
tion scheduling [24, 28, 41]. However, gradient compression will
inevitably lead to training accuracy degradation, and communi-
cation scheduling does not reduce the traffic volume and may
still encounter the communication bottleneck on links or/and PSs.
With the advent of programmable network hardware (e.g., pro-
grammable switches [5] and smartNICs [6]), in-network aggregation
(INA) [16, 29, 37] holds great promise in solving the communica-
tion bottleneck. Specifically, some gradients can be aggregated by
programmable devices inside the network. In this way, the traf-
fic volume sent to the PS will be reduced, thereby alleviating the
inbound bandwidth bottleneck of the PS (see details in §2.1).

Accelerating DT with INA is complicated, and only a few works
[29, 37] have made preliminary exploration in this field. SwitchML
[37] aggregates gradients on top-of-rack (ToR) P4-programmable
switches of workers to minimize communication overheads at
a single-rack scale. ATP [29] proposes a protocol based on P4-
programmable switches to support INA for multi-tenant learning
across racks. GRID [20] addresses the selection of appropriate gra-
dient aggregation points for each worker in a DT cluster. However,
these works primarily focus on improving INA effectiveness under
the traditional PS architecture. In reality, under this architecture, as
training tasks scale up, the PS’s ingress bandwidth may not meet
the demands of synchronizing parameters, especially in DT clus-
ters with numerous worker nodes. The INA scheme alone cannot
fully resolve the communication bottleneck at the PS due to the
transmission of a significant volume of gradient updates.

To tackle this challenge, we introduce a multi-PS architecture
[40, 44] within the INA scheme. Notably, the multi-PS architec-
ture and INA are two complementary and mutually beneficial ap-
proaches for alleviating communication bottlenecks in DT. By em-
ploying a multi-PS architecture to split DT tasks among multiple
PSs and selecting appropriate routing schemes to fully harness
the INA capabilities, we can effectively alleviate communication
bottlenecks and enhance the efficiency of DT (as demonstrated in
§5). Therefore, there is an urgent need for INA solutions with route
selection in multi-PS architectures. However, it is a non-trivial mis-
sion to achieve the goal. Firstly, we need to decide which PS each
gradient should be sent to, i.e., the routing destination is uncertain.
Secondly, aggregating gradients on programmable switches will
change the traffic size in forwarding, i.e., the routing traffic volume
is variable. Thirdly, performing DT will face multi-dimensional re-
source constraints, such as switch/PS processing capacity and link
bandwidth. To address these challenges, this paper proposes InArt
and the main contributions are as follows:

• We design InArt, the first-of-its-kind INA work with routing
selection in a multi-PS architecture for accelerating DT.

• Due to traffic dynamics, we take a two-phase approach: splitting
the training model among multiple PSs and selecting the rout-
ing paths for INA. For the first phase, we propose a Lagrange
multiplier-based algorithm (L-InArt). For the second phase, we
design a randomized rounding-based algorithm (R-InArt).

• We implement InArt on both the hardware testbed (with Tofino
switches) and software emulation (with bmv2 P4 switches). Exper-
imental results show that InArt achieves superior performance
compared with state-of-the-art solutions.

2 MOTIVATION
2.1 A Motivation Example
This section illustrates the pros and cons of state-of-the-art solu-
tions through an example, which motivates our study. As shown in
Fig. 1, a DT system using a multi-PS architecture consists of two
PSs (i.e., 𝑆1 and 𝑆2), six workers (i.e.,𝑊1-𝑊6) and two programmable
switches (i.e., 𝑉1 and 𝑉2). For simplicity, the switch processing ca-
pacity, PS processing capacity and link bandwidth are set to 6, 4
and 6, respectively, and the unit is omitted. In the example, we first
need to split the model, and each PS maintains a certain partition
of the model, i.e., sub-model. Then, we need to decide at what rate
the gradients should be sent to the corresponding PS under various
resource constraints. In this paper, we consider the typical synchro-
nous scheme, i.e., PSs will aggregate the gradient after receiving
gradients from all required workers [42]. Usually, a faster gradi-
ent sending rate means a shorter communication time. Thus, our
objective is to maximize the gradient sending rate of workers.

Let’s first consider the Load Balance Min-Min (LBMM) algorithm
[35], a classical algorithm used in multi-PS architecture without
INA. LBMM selects the link with the lightest load for load balancing
routing. As shown in Fig. 1(a), eachworker sends half of the gradient
to 𝑆1 for aggregation and the other half to 𝑆2 for aggregation. In
addition, since the total processing capacity of the two PSs is 8 and
there are six workers, the maximum gradient sending rate of each
worker should be 4/3 (i.e., 2/3 to 𝑆1 and 2/3 to 𝑆2). Otherwise, PSs
will be overloaded.

We then consider a recent work on INA, called ATP [37]. Specif-
ically, ATP performs best-effort aggregation on the ToR switch
for each worker under the corresponding rack, and the results are
shown in Fig. 1(b). Since ATP does not involve the splitting of
the model, here we assume the model is split equally, with each
worker sending half of the gradient to 𝑆1 and the other half to 𝑆2.
In this case, gradient fragments (i.e., portions of gradients) [21, 29]
from𝑊1,𝑊2 to 𝑆1 are aggregated on switch 𝑉1, fragments from
𝑊3,𝑊4 to 𝑆1 are directly routed to 𝑆1 without INA, fragments from
𝑊1,𝑊2,𝑊3,𝑊4 to 𝑆2 are aggregated on switch 𝑉1, fragments from
𝑊5,𝑊6 to 𝑆1 and 𝑆2 are aggregated on switch 𝑉2. Therefore, the
maximum gradient sending rate of ATP is 2.

2.2 Our Intuition
A question immediately following the above discussion is can we
do better by combining the merits of LBMM and ATP? In Fig. 1(c), we
demonstrate that by selecting an appropriate partitioning scheme
among multiple PSs and implementing an optimal routing scheme

InArt : In-Network Aggregation with Route Selection for Accelerating Distributed Training WWW ’24, May 13–17, 2024, Singapore, Singapore

*

Parameter

Server(PS)
Programmable

Switch
Worker

Non-Aggregated

Gradient

Aggregated

Gradient

1 Gradient

1 Transmission Rate

W2:4/3 W3:4/3 W4:4/3 W5:4/3 W6:4/3

V2:0/6

S2:4/4S1:4/4

V1:0/6

(a) LBMM

W1:4/3

2/3
2/3

2/3
2/3

2/3 2/3 2/3 2/3 2/3
2/3

2/3
2/3

1 1
1

1 1
1

1
1

1
1 1.5

W1:2.5W1:2 W2:2 W3:2 W4:2 W5:2 W6:2

V2:4/6

S2:2/4S1:4/4

V1:6/6

(b) ATP

1
1

W2:2.5 W3:2.5 W4:2.5 W5:2.5 W6:2.5

V2:6/6

S2:4/4S1:3/4

V1:6/6

(c) InArt

1
1.5 1.5

1.5
1.5 1.51

1 1
1

1

Figure 1: A DT system consists of two PSs (i.e., 𝑆1 and 𝑆2), six workers (i.e.,𝑊1-𝑊6) and two programmable switches (i.e., 𝑉1 and
𝑉2). The switch processing capacity, PS processing capacity and link bandwidth are set to 6, 4 and 6, respectively. We use colors
to distinguish gradients sent to different PSs. Values near PSs and switches represent their loads, while those near workers
denote maximum gradient sending rates. The left plot shows the gradient communication scheme using the LBMMmethod
[35], and the maximum sending rate is 4/3. The middle plot shows the gradient communication scheme by ATP [29] with a
maximum sending rate of 2. The right plot shows that our proposed InArt can achieve a maximum sending rate of 2.5.

for INA, we can achieve a maximum gradient sending rate of 2.5.
This rate is 87.5% faster than LBMM and 25% faster than ATP. In this
case, gradient fragments from𝑊1,𝑊2,𝑊3,𝑊4 to 𝑆1 are aggregated
on switch 𝑉1, fragments from𝑊5 and𝑊6 to 𝑆1 are aggregated on
switch 𝑉2, gradient fragments from𝑊1,𝑊2,𝑊3 to 𝑆2 are directly
routed to 𝑆2 without INA and fragments from𝑊4,𝑊5,𝑊6 to 𝑆2 are
aggregated on 𝑆2. With our findings, this paper aims to accelerate
distributed training by designing an efficient route selection in a
multi-PS architecture for INA, to maximize the gradient sending rate.

3 PROBLEM DEFINITION
3.1 System Model
A typical multi-PS architecture mainly contains two components,
worker set𝑊 = {𝑤1, ...,𝑤 |𝑊 |} and PS set 𝑆 = {𝑠1, ..., 𝑠 |𝑆 |}, where
|𝑊 | and |𝑆 | are the numbers of workers and PSs, respectively.
According to the above definition, we model the DT cluster as
𝐺 = (𝑊,𝑆,𝑉 , 𝐸), where𝑉 = {𝑣1, ..., 𝑣 |𝑉 |} is the set of programming
switches (e.g., Intel Tofino switches [5]), and 𝐸 = {𝑒1, ..., 𝑒 |𝐸 |} rep-
resents the communication links among these switches, workers
and PSs. During the process of gradient aggregation, we regard gra-
dient fragments with the same source (i.e.,worker) and aggregation
location (i.e., switch or PS) as a flow for simplicity. Let 𝑃𝑠,𝑤 denote
a set of feasible routing paths from worker𝑤 to PS 𝑠 . Similarly, let
𝑃𝑣,𝑤 and 𝑃𝑠,𝑣 denote the feasible routing path set from switch 𝑣 to
worker 𝑤 and from PS 𝑠 to switch 𝑣 , respectively. Moreover, we
use𝑃 =

{
𝑃𝑠,𝑤 ∪ 𝑃𝑣,𝑤 ∪ 𝑃𝑠,𝑣 | ∀𝑤 ∈𝑊, 𝑣 ∈ 𝑉 , 𝑠 ∈ 𝑆

}
to denote the all

feasible routing path in the cluster 𝐺 . For each switch 𝑣 ∈ 𝑉 , we
use𝐶 (𝑣) to denote the total processing capacity, and 𝑐 (𝑣) to denote
the processing capacity used by background traffic. Moreover, for
each PS 𝑠 ∈ 𝑆 , let 𝐵(𝑠) represent the total ingress bandwidth, and
𝑏 (𝑠) represent the amount of ingress bandwidth already occupied.
Similarly, let 𝐵(𝑒) and 𝑏 (𝑒) denote the total bandwidth and the
bandwidth used by background traffic for each link 𝑒 , respectively.
For simplicity, we focus on accelerating the training time of a sin-
gle DT job. It is worth noting that our proposed scheme can be
readily extended to accommodate scenarios involving multiple DT
jobs (see Appendix B.1 for details). To ensure system stability, we
adopt a synchronous approach [17] for model updating, where the

Notations Semantics

𝑊,𝑤 The worker set, a worker in𝑊
𝑉, 𝑣 The programmable switch set, a switch in𝑉
𝑆, 𝑠 The PS set, a PS in 𝑆

𝐸, 𝑒 The link set, a link in 𝐸

𝑃, 𝑝 The routing path set, a path in 𝑃

𝐶 (𝑣), 𝑐 (𝑣) Total, used processing capacity of 𝑣
𝐵 (𝑠), 𝑏 (𝑠) Total, used bandwidth of 𝑠
𝐵 (𝑒), 𝑏 (𝑒) Total, used ingress bandwidth of 𝑣
𝑥𝑠 Proportion of model that 𝑠 is responsible
𝑦𝑠,𝑤 Are gradient fragments from 𝑤 to 𝑠 aggregated by 𝑠
𝑦
𝑠,𝑤
𝑣 Are gradient fragments from 𝑤 to 𝑠 aggregated by 𝑣

𝑞
𝑠,𝑤
𝑝 Are gradient fragments from 𝑤 to 𝑠 routed on 𝑝

𝑞
𝑣,𝑤
𝑝 Are gradient fragments from 𝑤 to 𝑣 routed on 𝑝

𝑞
𝑠,𝑣
𝑝 Are gradient fragments from 𝑣 to 𝑠 routed on 𝑝

𝑧𝑠𝑣 Are aggregated gradient fragments on 𝑣 required sent to 𝑠
𝑓 Gradient sending rate of workers

Table 1: Key Notations

PSs aggregate gradient fragments after receiving them from all
required workers. In this context, a faster gradient sending rate
𝑓 generally leads to a shorter training time. For ease of reference,
Table 1 summarizes the key notations.

3.2 Problem Definition of InArt
The key idea of InArt is to make the following three decisions.
• The proportion of the model aggregation that each PS is respon-
sible for. Let variable 𝑥𝑠 represent the proportion of the model
that the PS 𝑠 is responsible for aggregation.

• The location where each gradient is aggregated. Let variable
𝑦𝑠,𝑤 ∈ {0, 1} denote whether gradient fragments from worker𝑤
to PS 𝑠 are directly aggregated on the PS 𝑠 or not. We use variable
𝑦
𝑠,𝑤
𝑣 ∈ {0, 1} to represent whether fragments from worker𝑤 to
PS 𝑠 are aggregated by programmable switch 𝑣 or not.

• The routing path for each gradient. Let binary variables 𝑞𝑠,𝑤𝑝 ,
𝑞
𝑣,𝑤
𝑝 and 𝑞𝑠,𝑣𝑝 denote whether gradient fragments from worker𝑤
to PS 𝑠 , from worker𝑤 to switch 𝑣 and from switch 𝑣 to PS 𝑠 will
be routed on path 𝑝 or not, respectively.

WWW ’24, May 13–17, 2024, Singapore, Singapore Jiawei Liu, et al.

We further consider the following six constraints when performing
INA with route selection.
• Model partition constraints: We split the model into several sub-
models and each PS is responsible for a sub-model. This means
that each sub-model must have a corresponding PS for aggrega-
tion, represented as the equation

∑
𝑠∈𝑆 𝑥𝑠 = 1.

• INA constraints: Considering the limited number and processing
capacity of programmable switches in the cluster, similar to [29,
37], we assume that each gradient fragment will be aggregated
in-network once at most to balance the problem complexity and
the network performance, which is 𝑦𝑠,𝑤𝑣 ≤ 𝑧𝑠𝑣,∀𝑠,𝑤, 𝑣 .

• Routing constraints: Each gradient fragment must be routed from
a worker to a PS for global aggregation through a feasible path.
Specifically, if gradient fragments from worker 𝑤 to PS 𝑠 are
directly aggregated by PS without INA, we have

∑
𝑝∈𝑃𝑠,𝑤 𝑞

𝑠,𝑤
𝑝 =

𝑦𝑠,𝑤 ,∀𝑠,𝑤 . If fragments from worker𝑤 to PS 𝑠 are aggregated on
the programmable switch 𝑣 , we have

∑
𝑝∈𝑃𝑣,𝑤 𝑞

𝑣,𝑤
𝑝 = 𝑦

𝑠,𝑤
𝑣 ,∀𝑠,𝑤, 𝑣 ,

and
∑
𝑝∈𝑃𝑠,𝑣 𝑞

𝑠,𝑣
𝑝 = 𝑦

𝑠,𝑤
𝑣 ,∀𝑠,𝑤, 𝑣 .

• Switch capacity constraints: Each programmable switch can only
aggregate gradient fragments at a limited rate due to switch
processing capacity limitations. Therefore, we have

∑
𝑠∈𝑆 𝑓 ·𝑥𝑠 ·∑

𝑤∈𝑊 𝑦
𝑠,𝑤
𝑣 + 𝑐 (𝑣) ≤ 𝐶 (𝑣),∀𝑣 .

• Link capacity constraints: For each link 𝑒 , its traffic load should
not exceed its bandwidth capacity 𝐶 (𝑒). Thus, we have ∑𝑠∈𝑆 𝑓 ·
𝑥𝑠 ·

∑
𝑣∈𝑉

∑
𝑝∈𝑃 :𝑒∈𝑝

(
(𝑞𝑠,𝑣𝑝 +∑𝑤∈𝑊(𝑞𝑣,𝑤𝑝 +𝑞𝑠,𝑤𝑝)

)
+ 𝑏 (𝑒) ≤ 𝐵(𝑒),∀𝑒 .

• PS capacity constraints: For each PS 𝑠 , the forwarding rate can’t
exceed its ingress bandwidth 𝐵(𝑠). Let binary variable 𝑧𝑠𝑣 indicate
whether aggregated gradient fragments exist on switch 𝑣 that
need to be sent to PS 𝑠 . Obviously, we have 𝑦𝑠,𝑤𝑣 ≤ 𝑧𝑠𝑣,∀𝑠,𝑤, 𝑣 .
Note that two types of gradient fragments are routed to the PS
for global aggregation: fragments forwarded directly by workers
without network aggregation (i.e., 𝑦𝑠,𝑤 = 1), and fragments ag-
gregated by programmable switches (i.e., 𝑧𝑠𝑣 = 1). Accordingly,
we have 𝑓 · 𝑥𝑠 ·

(∑
𝑤∈𝑊 𝑦𝑠,𝑤 +∑

𝑣∈𝑉 𝑧𝑠𝑣
)
+ 𝑏 (𝑠) ≤ 𝐵(𝑠),∀𝑠 .

Furthermore, our objective is to maximize the gradient sending
rate of workers 𝑓 . Formally, we define the problem as Eq. (1).

max 𝑓

𝑆.𝑡 .

∑
𝑠∈𝑆 𝑥𝑠 = 1,

𝑦𝑠,𝑤 +∑
𝑣∈𝑉 𝑦

𝑠,𝑤
𝑣 = 1, ∀𝑠, 𝑤∑

𝑝∈𝑃𝑠,𝑤 𝑞
𝑠,𝑤
𝑝 = 𝑦𝑠,𝑤 , ∀𝑠, 𝑤∑

𝑝∈𝑃𝑣,𝑤 𝑞
𝑣,𝑤
𝑝 = 𝑦

𝑠,𝑤
𝑣 , ∀𝑠, 𝑤, 𝑣∑

𝑝∈𝑃𝑠,𝑣 𝑞
𝑠,𝑣
𝑝 = 𝑦

𝑠,𝑤
𝑣 , ∀𝑠, 𝑤, 𝑣∑

𝑠∈𝑆 𝑓 · 𝑥𝑠 ·∑𝑤∈𝑊 𝑦
𝑠,𝑤
𝑣 + 𝑐 (𝑣) ≤ 𝐶 (𝑣), ∀𝑣∑

𝑠∈𝑆
𝑓 𝑥𝑠

∑
𝑣∈𝑉

∑
𝑝∈𝑃 :𝑒∈𝑝

((𝑞𝑠,𝑣𝑝 + ∑
𝑤∈𝑊

(𝑞𝑣,𝑤𝑝 +𝑞𝑠,𝑤𝑝))+𝑏 (𝑒)≤𝐵 (𝑒), ∀𝑒

𝑦
𝑠,𝑤
𝑣 ≤ 𝑧𝑠𝑣, ∀𝑠, 𝑤, 𝑣

𝑓 · 𝑥𝑠 · (∑𝑤∈𝑊 𝑦𝑠,𝑤 +∑
𝑣∈𝑉 𝑧𝑠𝑣) + 𝑏 (𝑠) ≤ 𝐵 (𝑠), ∀𝑠

𝑥𝑠 ∈ [0, 1], ∀𝑠
𝑦𝑠,𝑤 , 𝑦

𝑠,𝑤
𝑣 ∈ {0, 1}, ∀𝑠, 𝑤, 𝑣

𝑧𝑠𝑣 ∈ {0, 1}, ∀𝑠, 𝑣
𝑞
𝑠,𝑤
𝑝 , 𝑞

𝑣,𝑤
𝑝 , 𝑞

𝑠,𝑣
𝑝 ∈ {0, 1}, ∀𝑠, 𝑤, 𝑣, 𝑝

𝑓 ≥ 0

(1)

The first equality in Eq. (1) represents the model partition con-
straints. The subsequent set of equalities denotes the INA con-
straints. Following that, the third to fifth sets of equalities describe

the routing constraints. The sixth set of inequalities represents the
switch capacity constraints. The seventh set of inequalities repre-
sents the link capacity constraints. Finally, the last two inequalities
denote the PS capacity constraints.

However, it is difficult to directly solve the problem in Eq. (1).
Note that the left side of the sixth set of inequalities in Eq. (1)
contains the product of two continuous variables 𝑥𝑠 , 𝑓 and a bi-
nary variable 𝑦𝑠,𝑤𝑣 . In other words, InArt is a typically nonlinear
mixed-integer programming (NMIP) problem, which is NP-hard
[31]. Designing an algorithm for InArt is far from trivial and is in
urgent need.

4 ALGORITHM DESIGN
4.1 AlgorithmWorkflow
In a cluster, where multiple DT jobs or applications are running
simultaneously, the network traffic can undergo significant changes.
Thus, in order to adapt to traffic uncertainty/dynamics, we should
update routing paths and INA policy frequently. However, modify-
ing the model scale on the PSs during training is not feasible due
to consistency concerns.

To address this challenge, we propose a two-phase approach to
solve the InArt problem. In the first phase, conducted at longer inter-
vals such as several hours or a day, we divide the model among mul-
tiple PSs without considering route selection (§4.2). This simplifies
InArt into a nonlinear programming problem, which we solve using
the Lagrange multiplier method. In the second phase, triggered by
events such as network congestion, we focus on the selection of
routing paths for INA (§4.3). We maintain a fixed model partition
ratio and transform InArt into an integer programming problem.
To efficiently handle this, we design a randomized rounding-based
algorithm for INA with route selection.

4.2 Algorithm Design for Splitting the Model
In the first phase, we mainly split the model among multiple PSs
and determine the sub-model that each PS is responsible for, i.e.,
get the value of variables 𝑥𝑠 ∈ [0, 1]. The procedure for this task is
outlined in Algorithm 1. Specifically, at first, we focus on the switch
capacity constraints and the PS capacity constraints in Eq. (1). Then,
we relax the variables 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 and 𝑧𝑠𝑣 from integer to fractional.
The problem in Eq. (1) converts to nonlinear programming as Eq.
(2). Note that variables 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 and 𝑧𝑠𝑣 are integral in Eq. (1), but
fractional in Eq. (2). Since Eq. (2) is a nonlinear programming, we
design a generalized Lagrange multiplier (LM) based algorithm [30],
called L-InArt, to get the value of variables 𝑥𝑠 .

max 𝑓

𝑆.𝑡 .

∑
𝑠∈𝑆 𝑥𝑠 = 1,

𝑦𝑠,𝑤 +∑
𝑣∈𝑉 𝑦

𝑠,𝑤
𝑣 = 1, ∀𝑠, 𝑤∑

𝑠∈𝑆
𝑓 · 𝑥𝑠 ·∑𝑤∈𝑊 𝑦

𝑠,𝑤
𝑣 ≤ 𝐶 (𝑣) − 𝑐 (𝑣), ∀𝑣

𝑦
𝑠,𝑤
𝑣 ≤ 𝑧𝑠𝑣, ∀𝑠, 𝑤, 𝑣

𝑓 · 𝑥𝑠 · (∑𝑤∈𝑊 𝑦𝑠,𝑤 +∑
𝑣∈𝑉 𝑧𝑠𝑣) ≤ 𝐵 (𝑠) − 𝑏 (𝑠), ∀𝑠

𝑥𝑠 ∈ [0, 1], ∀𝑠
𝑦𝑠,𝑤 , 𝑦

𝑠,𝑤
𝑣 ∈ [0, 1], ∀𝑠, 𝑤, 𝑣

𝑧𝑠𝑣 ∈ [0, 1], ∀𝑠, 𝑣
𝑓 ≥ 0

(2)

InArt : In-Network Aggregation with Route Selection for Accelerating Distributed Training WWW ’24, May 13–17, 2024, Singapore, Singapore

Let symbol𝑋 represents all variables in Eq. (2), i.e.,𝑋 = {𝑥𝑠 , 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣
, 𝑧𝑠𝑣}. We consider the Lagrange function L(𝑋) of Eq. (2) as follows:

L(𝑋) =
∑︁

𝑠∈S

∑︁
𝑤∈W _𝑠,𝑤ℎ𝑠,𝑤 (𝑋) + 𝛼𝑤 (𝑋) +

∑︁
𝑣∈V 𝜌𝑣𝑝𝑣 (𝑋)

+
∑︁

𝑠∈S \𝑠𝑞𝑠 (𝑋) +
∑︁

𝑠∈S

∑︁
𝑤∈W

∑︁
𝑣∈V 𝜎𝑣,𝑠,𝑤𝑟𝑣,𝑠,𝑤 (𝑋)

− 𝑓 − 𝜏𝑠𝑥𝑠 − 𝛽𝑠,𝑤𝑦𝑠,𝑤 − 𝛿𝑠,𝑣,𝑤𝑦𝑠,𝑣,𝑤 − Z𝑠,𝑣𝑧𝑠,𝑣 + [𝑠 (𝑥𝑠 − 1)
+ `𝑠,𝑤 (𝑦𝑠,𝑤 − 1) + 𝜔𝑠,𝑣,𝑤 (𝑦𝑠,𝑣,𝑤 − 1) + 𝛾𝑠,𝑣 (𝑧𝑠,𝑣 − 1) (3)

Greek variables in Eq. (3) represent the Lagrange multiplier corre-
sponding to the constraints in Eq. (2). For example, the variable 𝛼
corresponds to the first set of constraints of 𝑥𝑠 in Eq. (2). Meanwhile,
these variables should be non-negative. In addition, the functions
ℎ𝑠,𝑤 (𝑋),𝑤 (𝑋), 𝑝𝑣 (𝑋), 𝑞𝑠 (𝑋), and 𝑟𝑣,𝑠,𝑤 (𝑋) denote the first set to
the fifth set of constraints in Eq. (2), respectively. The definition of
these functions is as follows:

ℎ𝑠,𝑤 (𝑋)=𝑦𝑠,𝑤 +∑
𝑣∈𝑉 𝑦

𝑠,𝑤
𝑣 − 1, ∀𝑠,𝑤

𝑤 (𝑋)=1 −∑
𝑠∈S 𝑥𝑠 ,

𝑝𝑣 (𝑋)=∑𝑠∈𝑆 𝑓 · 𝑥𝑠 ·
∑

𝑤∈𝑊 𝑦
𝑠,𝑤
𝑣 − (𝐶 (𝑣) − 𝑐 (𝑣)) ∀𝑣

𝑞𝑠 (𝑋)= 𝑓 ·𝑥𝑠 · (
∑

𝑤∈𝑊
𝑦𝑠,𝑤+∑

𝑣∈𝑉
𝑧𝑠𝑣)−(𝐵(𝑠)−𝑏 (𝑠)), ∀𝑠

𝑟𝑣,𝑠,𝑤 (𝑋)=𝑦𝑠,𝑤𝑣 − 𝑧𝑠𝑣, ∀𝑣, 𝑠,𝑤

(4)

To determine the extreme point, we utilize the Karush-Kuhn-Tucker
(KKT) conditions [22, 30] and find the partial derivative, which
yields a set of equations for 𝑥𝑠 . Solving these equations through
Gaussian elimination [23] provides us with the values of 𝑥𝑠 . For a
more comprehensive understanding, the reader can refer to [30, 39].
Once we have obtained the calculated values of 𝑥𝑠 , we split the
DT model among multiple servers accordingly. Notably, a detailed
description of the model splitting process can be found in Appendix
B.2 due to space limitations.

Algorithm 1: L-InArt: LM-Based Algorithm for InArt
1 Step 1: Relaxing the InArt problem
2 Focus on the switch and PS capacity constraints in Eq. (1)
3 Relax 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 , and 𝑧𝑠𝑣 from integer to fractional
4 Construct a nonlinear programming in Eq. (2)
5 Step 2: Deriving the extreme point of 𝑥𝑠
6 Give the Lagrange function L(𝑋) in Eq. (3)
7 Obtain an equation set for 𝑥𝑠 by take partial derivative to

the Lagrange function L(𝑋) of Eq. (3) and Eq. (4)
8 Solve these equations and split the model among multiple

PSs based on the value of 𝑥𝑠

4.3 Algorithm Design for INA and Routing
The second phase of InArt gives the INA and routing schemes.
Since the value of 𝑥𝑠 is solved in the first phase, we introduce the
result into Eq. (1), and simplify InArt into an integer linear program-
ming problem, which is challenging to solve in a polynomial time.
Accordingly, in this section, we propose a randomized rounding-
based algorithm for the second phase, called R-InArt. The R-InArt
algorithm is formally described in Algorithm 2. In the first step
of R-InArt, we construct linear programming as relaxation of Eq.
(1). Specifically, InArt assumes that each gradient fragment will be

Algorithm 2: R-InArt: RR-Based Algorithm for InArt
1 Step 1: Solving the relaxed problem of Eq. (1)
2 Construct the linear programming LP-InArt in Eq. (5)
3 Derive the optimal solution 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 , �̃�𝑠,𝑣 , 𝑞𝑠,𝑤𝑝 , 𝑞𝑣,𝑤𝑝 , 𝑞𝑠,𝑣𝑝
4 Step 2: Selecting Routing Path
5 Obtain an integer solution 𝑦𝑠,𝑤 and 𝑦𝑠,𝑤𝑣 by RR
6 for each PS 𝑠 ∈ 𝑆 do
7 for each worker𝑤 ∈𝑊 do
8 if 𝑦𝑠,𝑤 == 1 then
9 Obtain an integral solution 𝑞𝑠,𝑤𝑝 by RR

10 for each path 𝑝 ∈ 𝑃𝑠,𝑤 do
11 if 𝑞𝑠,𝑤𝑝 == 1 then
12 for each switch 𝑣 along path 𝑝 do
13 Install a flow entry on switch 𝑣

14 for each switch 𝑣 ∈ 𝑉 do
15 if 𝑦𝑠,𝑤𝑣 == 1 then
16 Set the value of 𝑧𝑠𝑣 to 1
17 Install a INA rule on switch 𝑣 for the flow

from worker𝑤 to PS 𝑠
18 Obtain an integral solution 𝑞𝑣,𝑤𝑝 by RR
19 for each path 𝑝 ∈ 𝑃𝑣,𝑤 do
20 if 𝑞𝑣,𝑤𝑝 == 1 then
21 for each 𝑣 along path 𝑝 do
22 Install a flow entry on 𝑣

23 for each switch 𝑣 ∈ 𝑉 do
24 Obtain an integral solution 𝑞𝑠,𝑣𝑝 by RR
25 for each path 𝑝 ∈ 𝑃𝑠,𝑣 do
26 if 𝑞𝑠,𝑣𝑝 == 1 then
27 for each switch 𝑣 along path 𝑝 do
28 Install a flow entry on switch 𝑣

routed on a feasible path and aggregated on at most one switch. By
relaxing these assumptions, each gradient fragment is splittable,
can be routed through several feasible paths and aggregated by
multiple switches. We formulate the linear programming LP-InArt
as follows:

max 𝑓

𝑆.𝑡 .

𝑦𝑠,𝑤 + ∑
𝑣∈𝑉

𝑦
𝑠,𝑤
𝑣 = 1, ∀𝑠, 𝑤∑

𝑝∈𝑃𝑠,𝑤
𝑞
𝑠,𝑤
𝑝 = 𝑦𝑠,𝑤 , ∀𝑠, 𝑤∑

𝑝∈𝑃𝑣,𝑤
𝑞
𝑣,𝑤
𝑝 = 𝑦

𝑠,𝑤
𝑣 , ∀𝑠, 𝑤, 𝑣∑

𝑝∈𝑃𝑠,𝑣
𝑞
𝑠,𝑣
𝑝 = 𝑦

𝑠,𝑤
𝑣 , ∀𝑠, 𝑤, 𝑣∑

𝑠∈𝑆
𝑓 · 𝑥𝑠 · ∑

𝑤∈𝑊
𝑦
𝑠,𝑤
𝑣 + 𝑐 (𝑣) ≤ 𝐶 (𝑣), ∀𝑣∑

𝑠∈𝑆
𝑓 𝑥𝑠

∑
𝑣∈𝑉

∑
𝑝∈𝑃 :𝑒∈𝑝

((𝑞𝑠,𝑣𝑝 + ∑
𝑤∈𝑊

(𝑞𝑣,𝑤𝑝 +𝑞𝑠,𝑤𝑝))+𝑏 (𝑒)≤𝐵 (𝑒), ∀𝑒

𝑦
𝑠,𝑤
𝑣 ≤ 𝑧𝑠𝑣, ∀𝑠, 𝑤, 𝑣

𝑓 · 𝑥𝑠 · (∑
𝑤∈𝑊

𝑦𝑠,𝑤 + ∑
𝑣∈𝑉

𝑧𝑠𝑣) + 𝑏 (𝑠) ≤ 𝐵 (𝑠), ∀𝑠

𝑦𝑠,𝑤 , 𝑦
𝑠,𝑤
𝑣 ∈ [0, 1], ∀𝑠, 𝑤, 𝑣

𝑧𝑠𝑣 ∈ [0, 1], ∀𝑠, 𝑣
𝑞
𝑠,𝑤
𝑝 , 𝑞

𝑣,𝑤
𝑝 , 𝑞

𝑠,𝑣
𝑝 ∈ [0, 1], ∀𝑠, 𝑤, 𝑣, 𝑝

𝑓 ≥ 0

(5)

Note that variables 𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 , 𝑧𝑠𝑣 , 𝑞
𝑠,𝑤
𝑝 , 𝑞𝑣,𝑤𝑝 , and 𝑞

𝑠,𝑣
𝑝 are integer

in Eq. (1), but fractional in Eq. (5). Eq. (5) is a linear programming

WWW ’24, May 13–17, 2024, Singapore, Singapore Jiawei Liu, et al.

problem, we can use a linear programming solver (e.g., Cplex [2]) to
solve it in polynomial time. Assume that the optimal solution for Eq.
(5) is denoted as {𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 , �̃�𝑠,𝑣, 𝑞

𝑠,𝑤
𝑝 , 𝑞

𝑣,𝑤
𝑝 , 𝑞

𝑠,𝑣
𝑝 }, and the optimal

result is denoted as 𝑓 . Since Eq. (5) is a relaxation of Eq. (1), 𝑓 is
the upper-bound for Eq. (1).

In the second step of R-InArt, we give the INA scheme and
routing path. At first, using the randomized rounding (RR) method
[45], we derive the integral solution {𝑦𝑠,𝑤 , 𝑦𝑠,𝑤𝑣 }, for ∀𝑠 ∈ 𝑆 , ∀𝑤 ∈
𝑊 , and 𝑣 ∈ 𝑉 . Specifically, if 𝑦𝑠,𝑤 = 1, it means that gradient
fragments from worker 𝑤 to PS 𝑠 will not be aggregated by any
switches, but will be aggregated on PS 𝑠 . If 𝑦𝑠,𝑤𝑣 = 1, it means that
the fragments from worker𝑤 to PS 𝑠 will be aggregated on switch 𝑣 .
Moreover, we will set the value of 𝑧𝑠𝑣 as 1. Next, we give the routing
path 𝑞 of each gradient fragment from worker 𝑤 to PS 𝑠 . Then
we derive the integral solution by RR, denoted as {𝑞𝑠,𝑤𝑝 , 𝑞

𝑣,𝑤
𝑝 , 𝑞

𝑠,𝑣
𝑝 }.

Note that each gradient fragment will be aggregated in at most one
switch for INA, and be assigned one feasible path for routing by
InArt. Owing to space limitations, we have included specific RR
details in Appendix B.3.

5 EVALUATION
5.1 Performance Metrics and Benchmarks
5.1.1 Performance Metrics. We adopt the following eight perfor-
mance metrics to evaluate the improvement of our proposed InArt
for DT: (1) the gradient sending rate of workers; (2) the training
throughput; (3) the per-iteration time; (4) the communication time;
(5) the training speed; (6) the accuracy over training time; (7) the
network throughput; (8) the ingress traffic amount of PSs.

During a testbed run, we use iftop [3] to monitor the egress
bandwidth of each worker as the gradient sending rate. We measure
the number of processed samples (e.g., images) per second as the
training throughput. In addition, we record the time between two
consecutive iterations as the per-iteration time. In each iteration, we
measure the duration from a worker sending gradient fragments
to receiving the updated model as the communication time of one
iteration. Furthermore, we record the number of iterations over
a period of time as the training speed and record the accuracy of
each iteration. During an emulation run, we measure the gradient
sending rate and the communication time. In each iteration of the
emulation experiment, we calculate the traffic volume of gradient
fragment transferred by all the links as the network throughput. In
addition, we measure the total traffic volume of gradient fragments
from the workers and programmable switches to PSs per iteration,
as the ingress traffic amount of PSs.

5.1.2 Benchmarks. We choose three benchmarks for performance
comparison. The first benchmark splits the model in the same
proportion amongmultiple PSs (e.g., a DT architecture contains four
PSs, each maintaining 25% of the total model), and then performs
R-InArt for gradient route selection. The second benchmark is the
Load Balance Min-Min scheduling (LBMM) algorithm [35]. LBMM
is an efficient routing algorithm that does not consider INA in the
cluster. For gradient fragments fromworkers to PSs, LBMM chooses
the routing path with the most negligible impact on routing load
balancing. The third benchmark, called ATP [37], is a state-of-the-
art INA method. In ATP, gradient fragments are aggregated on ToR

programmable switches in the cluster. Then the aggregated traffic
will be routed to the PSs from the ToR switches with the least link
load. Note that ATP does not involve model splitting, and for fair
comparison, we assume that the model is split equally across PSs
in the following evaluations.

5.2 Testbed Evaluation
5.2.1 Testbed Settings. We use eight servers running Ubuntu 18.04
(Linux kernel version 5.4) and two Wedge100BF-32x programmable
switches with Intel Tofino chip [5] to build the testbed. The topology
of the testbed is the same as that of the example (Fig. 1) in §2.1.
Specifically, all servers have a 22-core Intel Xeon 6152 processor,
128GB RAM, and an NVIDIA GeForce RTX 3090. Each server is
equipped with a Mellanox ConnectX-6 dual-port 100Gbps NIC.
Besides, all the servers are connected with programmable switches
via 100Gbps links.

In terms of implementation details, similar to [29], we run Py-
Torch on each worker to carry out DT jobs. To implement INA on
the switch, we write the P4 program in P4-16 with Tofino Native
Architecture (TNA) [7]. More specifically, we pre-calculate our so-
lution’s model splitting and routing scheme with Pyomo [8] and
install the corresponding entries to the programmable switches
using the Barefoot Runtime Interface (BRI). We train two popular
models on the Cifar-10 dataset [25]: ResNet50 [12] with a size of
97MB and VGG19 [38] with a size of 548MB. Besides, the batch size
is set as 32 for all training jobs. We run each testbed 10 times and
calculate the average value as the results.

5.2.2 Testbed Results. We run three sets of experiments to evaluate
the performance of InArt and benchmarks. In the first set of exper-
iments, we observe the gradient sending rate of workers and the
training throughput, as shown in Figs. 2-3. It is evident that InArt
can achieve the best performance among all solutions. Fig. 2 shows
that as the number of workers increases, InArt always obtains
the highest gradient sending rate. For example, given 6 workers in
VGG19, the gradient sending rate of InArt, R-InArt, ATP and LBMM
are 26.2Gbps, 23.1Gbps, 19.25Gbps and 15.4Gbps, respectively. It
means that InArt can increase the gradient sending rates by 13.4%,
36.5% and 72%, compared with R-InArt, ATP and LBMM, respec-
tively. In Fig. 3, InArt consistently achieves the highest training
throughput with increasing numbers of workers. Specifically, with
6 workers in VGG19, InArt achieves a throughput of 223 images/s.
Comparatively, R-InArt, ATP, and LBMM achieve throughputs of
206 images/s, 188 images/s, and 162 images/s, respectively. In other
words, InArt can improve the training throughput by 8.3%, 18.6%
and 37.7% compared with R-InArt, ATP and LBMM, respectively.
The reason is that InArt selects a proper routing path under the
INA framework and designs an appropriate model splitting scheme
to maximize the gradient sending rate of workers.

The second set of experiments measures the total time and the
communication time of one iteration. Fig. 4 shows the per-iteration
time with different numbers of workers. Note that per-iteration
time consists of the local training time and the communication
time. Our method doesn’t optimize the local training time but can
co-exist with solutions decreasing local training time if needed.
We observe that the per-iteration time increases as the number of
workers increases, while InArt always obtains the least per-iteration

InArt : In-Network Aggregation with Route Selection for Accelerating Distributed Training WWW ’24, May 13–17, 2024, Singapore, Singapore

4 5 6
0

20

40

60

No. of Workers

Se
nd

in
g

Ra
te

 (
G

bp
s)

 LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

4 5 6
0

20

40

60

No. of Workers

Se
nd

in
g

Ra
te

 (
G

bp
s)

 LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50
Figure 2: Gradient Sending Rate vs. No. of Workers

4 5 6
0

50

100

150

200

250

300

No. of Workers

Th
ro

ug
hp

ut
 (i

m
ag

es
/s)

 LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

4 5 6
0.0K

0.4K

0.8K

1.2K

1.6K

2.0K

No. of Workers

Th
ro

ug
hp

ut
 (i

m
ag

es
/s)

 LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50
Figure 3: Training Throughput vs. No. of Workers

4 5 6
0.0

0.3

0.6

0.9

1.2

1.5

No. of Workers

Pe
r I

te
ra

tio
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

No. of Workers

Pe
r I

te
ra

tio
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50
Figure 4: Per Iteration Time vs. No. of Workers

4 5 6
0.0

0.2

0.4

0.6

0.8

No. of Workers

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

4 5 6
0.00

0.05

0.10

0.15

No. of Workers

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50
Figure 5: Communication Time vs. No. of Workers

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 T
im

e
(x

10
3 s)

No. of Iterations (x100)

 LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

0 5 10 15 20
0

1

2

3

4

Tr
ai

ni
ng

 T
im

e
(x

10
2 s)

No. of Iterations (x100)

 LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50
Figure 6: Training Time vs. No. of Iterations

time. For example, when the number of workers is 6 in VGG19, the
per-iteration times of LBMM, ATP, R-InArt and InArt are 0.97s,
0.85s, 0.78s and 0.69s, respectively. That means, InArt reduces the
per-iteration time by 29%, 19% and 12% compared with LBMM, ATP
and R-InArt, respectively. As shown in Fig. 5, InArt always has the
shortest communication time in each iteration. Given 6 workers in
VGG19, the communication time of LBMM, ATP, R-InArt and InArt
are 0.56s, 0.45s, 0.38s and 0.31s, respectively. InArt decreases the
communication time by 45%, 32% and 19%, compared with LBMM,
ATP and R-InArt, respectively. The reason is that InArt has the
highest gradient sending rate of workers (as described in Fig. 2),
thereby reducing the communication time.

Finally, we run two DT jobs with 6 workers to evaluate the
performance of training time. It can be observed from Fig. 6 that
InArt takes the least time to complete the DT job. For example, it
takes the 1380s for InArt to complete 2000 iterations of the VGG19
training job, while the numbers are 1541s, 1775s and 2105s when we
use R-InArt, ATP and LBMM, respectively. In addition, we assess
the accuracy of each benchmark over training time, and due to
space limitations, we summarize the results, with detailed findings
available in Appendix A.1. InArt can reach the target accuracy 1.2×,
1.38× and 1.84× faster than R-InArt, ATP and LBMM, respectively.

5.3 Emulation Evaluation

5.3.1 Emulation Settings. We implement a middle-scale emula-
tion with the classical fat-tree topology [19], which is commonly
adopted in clusters. We use the Mininet tool [4] to implement the
fat-tree topology, which consists of 9 core switches, 18 aggregation
switches, 18 ToR switches, and 54 servers. By default, we randomly
selected 4 servers as PSs and the remaining servers as workers.
Since we cannot support P4 hardware switches of a certain scale,
we obtain results using bmv2 [1] software switches. Unfortunately,
bmv2 software switches are not designed for line-rate packet pro-
cessing [36]. Therefore, we cannot inject Gbps traffic into bmv2
switches for our evaluations, and shrink the experimental setup
by a factor of 1000. Furthermore, These evaluations are performed
under two common network scenarios. The first is a homogeneous
scenario, in which the capacity of each link is 20Mbps. The sec-
ond is a heterogeneous scenario, and the link capacity is randomly
generated between 10Mbps and 30Mbps. We set the processing ca-
pacity of PSs and aggregation capacity of bmv2 switches as 20Mbps
and 9Mbps, respectively. To implement the INA and routing, we
pre-program the INA logic of bmv2 switches and pre-install the
flow table by P4 language. The emulation tests three different mod-
els, LSTM, VGG19, and ResNet-50. Specifically, the LSTM model is
commonly used for time series prediction, and VGG19 and ResNet-
50 are widely used for image classification. We set the gradient
size in one iteration of LSTM, VGG19 and ResNet-50 by a factor of
1000 to 1627KB, 548KB, and 97KB, respectively [37]. To emulate the
synchronous gradient communications, we deploy tcpreplay [9]
tools on each worker to send packets at the same rate. We run each
emulation 10 times and calculate the average value as the result.

5.3.2 Emulation Results. We run three sets of experiments for per-
formance evaluations. The first set of experiments focused on com-
paring the gradient sending rate of workers. On the one hand, we
observe the sending rate by varying the number of workers, as
shown in Figs. 7-8. From the left plot of Fig. 7, when training LSTM
jobs, the sending rate of workers is 10.75Mbps and 4.7Mbps by InArt

WWW ’24, May 13–17, 2024, Singapore, Singapore Jiawei Liu, et al.

ResNet-50 VGG19 LSTM

3

6

9

12

15

18

Se
nd

in
g

Ra
te

 (M
bp

s)

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

ResNet-50 VGG19 LSTM

3

6

9

12

15

18

Se
nd

in
g

Ra
te

 (M
bp

s)

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network
Figure 7: Gradient Sending Rate in Different Models

10 20 30 40 50

5

10

15

20

Se
nd

in
g

Ra
te

 (M
bp

s)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

10 15 20 25 30 35 40 45 50

5

10

15

20

Se
nd

in
g

Ra
te

 (M
bp

s)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network
Figure 8: Gradient Sending Rate vs. No. of Workers

ResNet-50 VGG19 LSTM

1

2

3

4

5

6

7

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

ResNet-50 VGG19 LSTM

1

2

3

4

5

6

7

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

) LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network
Figure 9: Gradient Communication Time in Different Models

10 20 30 40 50

2

4

6

8

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

10 20 30 40 50

2

4

6

8

Co
m

m
un

ic
at

io
n

Ti
m

e
(s

)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network
Figure 10: Gradient Communication Time vs. No. of Workers

and ATP, respectively. In Fig. 8, as the number of workers increases,
the gradient sending rate will gradually decrease since more work-
ers can use more network resources in the cluster. Inspiringly, our
solution can achieve a faster-sending rate than other benchmarks.
From the right plot of Fig. 8, when there are 50 workers in the
network, the sending rate is 8.73Mbps and 4.44Mbps by InArt and
ATP, respectively. It means our solution improved the sending rate
by 97% compared with ATP. On the other hand, we examine the
sending rate by varying the number of PSs. Due to space limitations,
we provide a summary of the results here, and detailed findings can
be found in Appendix A.2. InArt can achieve 2.37× improvements
in sending rate compared to ATP. This is because InArt sensibly
distributes DT tasks among PSs and strategically selects routing
schemes to utilize the capabilities of INA effectively.

The second set of experiments observes the communication time
of one iteration. In Fig. 9, we first observe the gradient commu-
nication time of three models. As the gradient size increases, the
communication time will become longer. The communication time
by InArt is much slower than that of ATP and LBMM. From the left
plot in Fig. 9, in the homogeneous scenario, the gradient communi-
cation time of Resnet-50 is 0.068s, 0.152s, and 0.35s by InArt, ATP,
and LBMM, respectively. Similarly, our solution performs better
than other benchmarks in the heterogeneous scenario. In Fig. 10,
we observe the impact of the number of workers on communica-
tion time. As the number of workers increases, the communication
time accordingly increases. However, the increasing rate of InArt is
much slower than that of ATP and LBMM. For example, in the het-
erogeneous scenario, compared to ATP, considering scenarios with
10, 20, 30, 40, and 50 workers, InArt reduces the communication
time by 48%, 54%, 57%, 53% and 49%, respectively. That is because a
faster sending rate can effectively reduce communication time.

Our third set of experiments measures the network throughput
and the ingress traffic amount of PSs per iteration. Due to space con-
straints, we present a summary of the results, while more detailed

results can be found in Appendix A.2. InArt significantly improves
the network throughput compared to state-of-the-art INA works,
achieving approximately 1.6× higher throughput. Additionally, our
approach reduces the load on PSs by 53%. These improvements are
attributed to InArt’s utilization of a combined INA scheme that
incorporates submodel partitioning and route selection.

6 CONCLUSION AND FUTUREWORK
In this paper, we design and implement InArt, the first-of-its-kind
work on INA with route selection in a multi-PS architecture, to
accelerate distributed training. InArt utilizes a multi-PS architecture
to distribute DT tasks among multiple PSs and effectively selects
routing schemes to fully leverage the capabilities of INA. Due to
traffic dynamics, InArt takes a two-phase approach: splitting the
training model among multiple PSs and selecting the routing paths
for INA. Two algorithms have been designed for these two phases,
respectively. Experiment results show that InArt can achieve a
superior gradient sending rate and less communication time than
the state-of-the-art solutions. In the future, we intend to explore the
application of INA with route selection in asynchronous distributed
training with a multi-PS architecture.

ACKNOWLEDGMENTS
The corresponding authors of this paper are Gongming Zhao and
Hongli Xu. This research received partial support from several
funding sources, including the National Science Foundation of
China (NSFC) under Grants 62372426, 62132019, and 62102392; the
Open Research Projects of Zhejiang Lab under Grant 2022QA0AB04;
the National Science Foundation of Jiangsu Province under Grant
BK20210121; the Fundamental Research Funds for the Central Uni-
versities; and the Youth Innovation Promotion Association of the
Chinese Academy of Science (2023481).

InArt : In-Network Aggregation with Route Selection for Accelerating Distributed Training WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] [n. d.]. Behavioral model version 2 (bmv2). https://github.com/p4lang/behavioral-

model Accessed: June. 14, 2023.
[2] [n. d.]. IBM ILOG CPLEX Optimization Studio. https://nl.mathworks.com/

products/connections/product_detail/Ibm-ilog-cplex.html.
[3] [n. d.]. iftop. http://www.ex-parrot.com/~pdw/iftop/ Accessed: June. 14, 2023.
[4] [n. d.]. An instant virtual network on your laptop. http://Mininet.org Accessed:

June. 14, 2023.
[5] [n. d.]. Intel Tofino. https://www.intel.com/content/www/us/en/products/

network-io/programmable-ethernet-switch/tofino-series.html Accessed: June.
14, 2023.

[6] [n. d.]. Netronome Agilio SmartNIC. https://www.netronome.com/products/
agilio-cx.

[7] [n. d.]. Open Tofino. https://github.com/barefootnetworks/Open-Tofino. Ac-
cessed: June. 14, 2023.

[8] [n. d.]. Pyomo. https://github.com/Pyomo/pyomo.
[9] [n. d.]. Tcpreplay - Pcap editing and replaying utilities. https://tcpreplay.appneta.

com. Accessed: June. 14, 2023.
[10] Lusine Abrahamyan, Yiming Chen, Giannis Bekoulis, and Nikos Deligiannis. 2021.

Learned gradient compression for distributed deep learning. IEEE Transactions
on Neural Networks and Learning Systems (2021).

[11] Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris Papail-
iopoulos. 2021. On the utility of gradient compression in distributed training
systems. arXiv preprint arXiv:2103.00543 (2021).

[12] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-
able, commodity data center network architecture. ACM SIGCOMM computer
communication review 38, 4 (2008), 63–74.

[13] Rand Jawad Kadhim Almahmood and Adem Tekerek. 2022. Issues and Solutions
in Deep Learning-Enabled Recommendation Systems within the E-Commerce
Field. Applied Sciences 12, 21 (2022), 11256.

[14] SaravananChandrasekaran, Aditya Kumar Singh Pundir, T Bheema Lingaiah, et al.
2022. Deep learning approaches for cyberbullying detection and classification
on social media. Computational Intelligence and Neuroscience 2022 (2022).

[15] Chia-Yu Chen, Jiamin Ni, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Xiao Sun,
Naigang Wang, Swagath Venkataramani, Vijayalakshmi Viji Srinivasan, Wei
Zhang, et al. 2020. Scalecom: Scalable sparsified gradient compression for
communication-efficient distributed training. Advances in Neural Information
Processing Systems 33 (2020), 13551–13563.

[16] Ge Chen, Gaoxiong Zeng, and Li Chen. 2021. P4COM: In-Network Computation
with Programmable Switches. arXiv preprint arXiv:2107.13694 (2021).

[17] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
2016. Revisiting distributed synchronous SGD. arXiv preprint arXiv:1604.00981
(2016).

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[19] Raj P Dhanya and VS Anitha. 2023. Implementation and Performance Evalua-
tion of Load Balanced Routing in SDN based Fat Tree Data Center. In 2023 6th
International Conference on Information Systems and Computer Networks (ISCON).
IEEE, 1–6.

[20] Jin Fang, Gongming Zhao, Hongli Xu, Changbo Wu, and Zhuolong Yu. 2023.
GRID: Gradient routing with in-network aggregation for distributed training.
IEEE/ACM Transactions on Networking (2023).

[21] Jin Fang, Gongming Zhao, Hongli Xu, Zhuolong Yu, Bingchen Shen, and Liguang
Xie. 2023. GOAT: Gradient Scheduling with Collaborative In-Network Aggrega-
tion for Distributed Training. In 2023 IEEE/ACM 31st International Symposium
on Quality of Service (IWQoS). 1–10. https://doi.org/10.1109/IWQoS57198.2023.
10188783

[22] Geoff Gordon and Ryan Tibshirani. 2012. Karush-kuhn-tucker conditions. Opti-
mization 10, 725/36 (2012), 725.

[23] Joseph F Grcar. 2011. Mathematicians of Gaussian elimination. Notices of the
AMS 58, 6 (2011), 782–792.

[24] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Campbell. 2019. Tictac: Ac-
celerating distributed deep learning with communication scheduling. Proceedings
of Machine Learning and Systems 1 (2019), 418–430.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[26] Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jinfeng
Li, Yuying Guo, and James Cheng. 2018. Flexps: Flexible parallelism control in
parameter server architecture. Proceedings of the VLDB Endowment 11, 5 (2018),
566–579.

[27] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A Unified Architecture for Accelerating Distributed {DNN} Training in
Heterogeneous {GPU/CPU} Clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 463–479.

[28] Minkoo Kang, Gyeongsik Yang, Yeonho Yoo, and Chuck Yoo. 2020. TensorExpress:
In-network communication scheduling for distributed deep learning. In 2020
IEEE 13th international conference on cloud computing (CLOUD). IEEE, 25–27.

[29] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, andMichael M Swift. 2021. ATP: In-network Aggregation for Multi-tenant
Learning.. In NSDI. 741–761.

[30] Mengmou Li. 2018. Generalized Lagrange multiplier method and KKT conditions
with an application to distributed optimization. IEEE Transactions on Circuits and
Systems II: Express Briefs 66, 2 (2018), 252–256.

[31] Jesus Lopez-Perez. 2021. Elasticities on a Mixed Integer Programming Model
for Revenue Optimization. In XX SIGEF Congress-Harnessing Complexity through
Fuzzy Logic. Springer, 153–177.

[32] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind Krishna-
murthy. 2018. Parameter hub: a rack-scale parameter server for distributed
deep neural network training. In Proceedings of the ACM Symposium on Cloud
Computing. 41–54.

[33] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuanzhe Liu. 2019.
Moving deep learning into web browser: How far can we go?. In The World Wide
Web Conference. 1234–1244.

[34] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian
Brabete, and Peter Pietzuch. 2020. {KungFu}: Making Training in Distributed
Machine Learning Adaptive. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 937–954.

[35] Shyam Singh Rajput and Virendra Singh Kushwah. 2016. A genetic based im-
proved load balanced min-min task scheduling algorithm for load balancing in
cloud computing. In 2016 8th international conference on Computational Intelli-
gence and Communication Networks (CICN). IEEE, 677–681.

[36] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-network computation is a dumb idea whose time has come. In
Proceedings of the 16th ACM Workshop on Hot Topics in Networks. 150–156.

[37] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Pe-
ter Richtarik. 2021. Scaling Distributed Machine Learning with In-Network
Aggregation. In 18th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 21). 785–808.

[38] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[39] Ankur Sinha, Tharo Soun, and Kalyanmoy Deb. 2019. Using Karush-Kuhn-
Tucker proximity measure for solving bilevel optimization problems. Swarm and
evolutionary computation 44 (2019), 496–510.

[40] Suraiya Tairin, Haiying Shen, and Zeyu Zhang. 2023. Embracing Uncertainty
for Equity in Resource Allocation in ML Training. In Proceedings of the 52nd
International Conference on Parallel Processing. 423–432.

[41] Ching-Yuan Tsai, Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. 2018. Commu-
nication scheduling optimization for distributed deep learning systems. In 2018
IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 739–746.

[42] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim
Verbelen, and Jan S Rellermeyer. 2020. A survey on distributed machine learning.
ACM Computing Surveys (CSUR) 53, 2 (2020), 1–33.

[43] Yanwu Yang and Panyu Zhai. 2022. Click-through rate prediction in online
advertising: A literature review. Information Processing & Management 59, 2
(2022), 102853.

[44] Xiao Zeng, Ming Yan, and Mi Zhang. 2021. Mercury: Efficient on-device dis-
tributed dnn training via stochastic importance sampling. In Proceedings of the
19th ACM Conference on Embedded Networked Sensor Systems. 29–41.

[45] Gongming Zhao, Jiawei Liu, Yutong Zhai, Hongli Xu, and Huang He. 2023. Allevi-
ating the Impact of Abnormal Events Through Multi-Constrained VM Placement.
IEEE Transactions on Parallel and Distributed Systems 34, 5 (2023), 1508–1523.
https://doi.org/10.1109/TPDS.2023.3248681

[46] Ruiting Zhou, Jinlong Pang, Qin Zhang, Chuan Wu, Lei Jiao, Yi Zhong, and
Zongpeng Li. 2022. Online Scheduling Algorithm for Heterogeneous Distributed
Machine Learning Jobs. IEEE Transactions on Cloud Computing (2022).

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://nl.mathworks.com/products/connections/product_detail/Ibm-ilog-cplex.html
https://nl.mathworks.com/products/connections/product_detail/Ibm-ilog-cplex.html
http://www.ex-parrot.com/~pdw/iftop/
http://Mininet.org
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.netronome.com/products/agilio-cx
https://www.netronome.com/products/agilio-cx
https://github.com/barefootnetworks/Open-Tofino
https://github.com/Pyomo/pyomo
https://tcpreplay.appneta.com
https://tcpreplay.appneta.com
https://doi.org/10.1109/IWQoS57198.2023.10188783
https://doi.org/10.1109/IWQoS57198.2023.10188783
https://doi.org/10.1109/TPDS.2023.3248681

WWW ’24, May 13–17, 2024, Singapore, Singapore Jiawei Liu, et al.

A ADDITIONAL EVALUATION DETAILS
A.1 Additional Testbed Evaluation
The experimental setup in this section is the same as the one de-
scribed in §5.2.

A.1.1 Accuracy. We conduct two DT jobs with 6 workers to eval-
uate the performance of Accuracy over training time, as depicted
in Fig. 11. It is evident that InArt achieves the specified accuracy
in the shortest amount of time. For example, when the model is
VGG19, InArt achieves an accuracy of 0.7214 in 151s, while R-InArt,
ATP, and LBMM require 181s, 208s, and 278s, respectively. This
illustrates that InArt reaches the target accuracy 1.2×, 1.38× and
1.84× faster than R-InArt, ATP, and LBMM, respectively. The results
demonstrate that proper gradient routing with INA significantly
speeds up distributed model training.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

A
cc
ur
ac
y

Training Time (´100s)

 LBMM
 ATP
 R-InArt
 InArt

(a) VGG19

0 2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

A
cc
ur
ac
y

Training Time (´100s)

 LBMM
 ATP
 R-InArt
 InArt

(b) ResNet-50
Figure 11: Accuracy over Training Time

A.2 Additional Emulation Evaluation
The experimental setup in this section is the same as the one de-
scribed in §5.3.

A.2.1 Gradient Sending Rate when No. of PS varies. In Fig. 12, we
select 48 servers as workers and vary the number of PSs from 2
to 6 to observe the gradient sending rate during LSTM training.
The results show high efficiency of our proposed algorithm, espe-
cially in the heterogeneous scenarios. Specifically, the sending rate
gradually increases as the number of PSs increases. On average,
in the heterogeneous network, InArt achieves a sending rate of
10.68Mbps. In comparison, the sending rates of R-InArt, ATP, and
LBMM are 8.85Mbps, 4.5Mbps, and 1.68Mbps, respectively. This
means that InArt can achieve 1.2×, 2.37×, and 6.34× improvements
in sending rate compared to R-InArt, ATP, and LBMM, respectively,
in heterogeneous networks.

2 3 4 5 6

3

6

9

12

15

18

 S
en

di
ng

 R
at

e
(M

bp
s)

Number of PSs

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

2 3 4 5 6

2
4
6
8

10
12
14
16

 S
en

di
ng

 R
at

e
(M

bp
s)

Number of PSs

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network

Figure 12: Gradient Sending Rate vs. No. of PSs

A.2.2 Network Throughput. As shown in Fig. 13, the network
throughput gradually increases with the increasing number of work-
ers, while our solution has the highest throughput. For example,
when there are 30 workers in the left plot of Fig. 13, InArt, ATP, and
LBMM achieves a network throughput of 420, 160, and 90 Mbps,
respectively. This suggests that our INA and dynamic routing ap-
proach utilizes network resources more efficiently. Compared with
ATP, InArt improves the network throughput by about 1.6×.

10 20 30 40 50

150

300

450

600

 T
hr

ou
gh

pu
t (

M
bp

s)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

10 20 30 40 50

150

300

450

600

Th
ro

ug
hp

ut
 (M

bp
s)

Number of Workers

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network

Figure 13: Network Throughput vs. No. of Workers

A.2.3 Ingress Traffic amount of PS. In Fig. 14, we indicate the
ingress traffic amount of PSs. As expected that the ingress traf-
fic amount of PSs using LBMM is much higher than that of other
benchmarks. This is because the LBMM does not consider INA,
and all the gradient fragments will be aggregated on PSs. Note
that InArt significantly reduces the processing load on PSs. For
example, when training VGG19, the ingress traffic amount of PSs is
3.44MB, 7.33MB, and 22MB by InArt, ATP, and LBMM, respectively.
Compared with ATP, our method reduces the load on PSs by 53%.

ResNet-50 VGG19 LSTM

12

24

36

48

60

In
gr

es
s T

ra
ffi

c
 (M

B)

 LBMM
 ATP
 R-InArt
 InArt

(a) Homogeneous Network

ResNet-50 VGG19 LSTM

12

24

36

48

60
In

gr
es

s T
ra

ffi
c

 (M
B)

 LBMM
 ATP
 R-InArt
 InArt

(b) Heterogeneous Network

Figure 14: Ingress Traffic amount of PSs in Different Models.

B DISCUSSION
B.1 Multi-DT Job Scenarios
This paper primarily focuses on minimizing the training time of
a single DT job. Notably, our proposed method can be readily ex-
tended to handle multi-DT jobs, leveraging the inherent indepen-
dence among different DT tasks. In particular, when processing
a specific DT task, the others can be treated as background traf-
fic [29, 46]. By sequentially processing each DT job, starting from
any one of them, InArt can be effectively extended to scenarios
involving multiple DT jobs.

InArt : In-Network Aggregation with Route Selection for Accelerating Distributed Training WWW ’24, May 13–17, 2024, Singapore, Singapore

B.2 Model Splitting Details
Model splitting in InArt refers to splitting the results (i.e., gradient)
of local training into multiple gradient fragments. This process
consists of two steps. At first, we calculate the optimal splitting
fraction (i.e., the proportion of the model) for each PS based on the
network topology and resource load by L-InArt. Then, we will split
the gradient into multiple gradient fragments based on the splitting
fraction, and encapsulate these gradient fragments into multiple
data flows that are sent to different PSs.

Specifically, each worker independently trains the model locally
during DT. Specifically, each worker independently trains the model
locally. In each iteration 𝑡 , each worker trains the model and gener-
ates a gradient by calculating 𝑔 = ∇𝐿(𝑤𝑡), where ∇ represents the
vector differential operator and 𝐿 represents the loss function of the
model𝑤 . Subsequently, workers transmit these gradients to the PSs
for global aggregation. PSs solely engage in gradient aggregation
(i.e., calculate the average of a set of floating-point vectors), but do
not involve complex forward and backward operations. Based on
the above characteristics, we can treat it as data flows since each
gradient is an array of floating-point numbers. Then, we can split
the data flow into multiple sub-flows based on the result of L-InArt,
and send each sub-flow to the corresponding PS for aggregation.

For example, when training VGG16 in a DT with two PS, the
worker generates a gradient with 31.25M floating-point numbers
(elements) per iteration. We may split the gradient into two aligned
fragments according to L-InArt (e.g., the first 16.25M elements to
𝑃𝑆1 and the last 15M elements to 𝑃𝑆2) . Subsequently, each worker
encapsulates these gradient fragments into packets and transmits
them to the corresponding PS. Upon receiving the gradients, each
PS performs the gradient aggregation operations and returns the
aggregated results back to the respective workers.

When a worker receives gradient fragments from multiple PSs,
it needs to recombine these fragments in the order of the previous
splitting scheme (i.e., sub-model combination), for local updating.
Notably, the operation of combining sub-models in InArt is easy to
implement and incurs negligible time overhead.

B.3 RR Details of R-InArt
In the following, we take the rounding process of INA as an example
to illustrate the specific RR details of the R-InArt algorithm. Specifi-
cally, there are two switches for INA, and the optimal solution 𝑦𝑠,𝑤

and {𝑦𝑠,𝑤𝑣 } of a worker𝑤 equals to 0.1 and {0.4, 0.5}, respectively.
Then the interval [0, 1] is splitted into three parts: (0, 0.4], (0.4, 0.9],
and (0.9, 1]. We generate a random value between 0 to 1, and choose
at most one switch for INA depending on this value. If the value is
less than 0.4, R-InArt will choose the first switch as the aggregation
switch for the gradient fragment from worker𝑤 to PS 𝑠 . Otherwise,
if the value is larger than 0.4 and less than 0.9, then the controller
will choose the second switch as the aggregation switch for this
gradient fragment. Meanwhile, if the value is larger than 0.9, the
gradient fragment will be aggregated on parameter servers but not
aggregated in the cluster.

B.4 Accuracy Loss Caused by INA
Indeed, INA may result in a decrease in accuracy, but it is within
an acceptable range [29, 37]. Specifically, due to the imperative of
maintaining line-rate processing in programmable switches, the
operations involve straightforward integer arithmetic and logic op-
erations. Neither floating-point nor integer division operations are
feasible under this condition. As a result, mainstream INA schemes
[29, 37], including InArt, choose to convert floating-point approxi-
mations to integer processing and division approximations to shift
operations, which will introduce some loss in training accuracy. For-
tunately, [37] has undergone extensive testing on a diverse range
of models, which indicates that this accuracy loss is acceptable.
For example, the accuracy losses of the three models used in our
experiments, LSTM, VGG19 and RestNet50, are 1.54%, 1.60% and
1.05%, respectively.

It is important to highlight that our benchmark LBMM does not
utilize INA, therefore ensuring no loss of accuracy (see details in
Appendix A.1). However, considering the additional advantages
provided by INA, it becomes evident that related INA solutions
like InArt and ATP outperform LBMM significantly. As a result, we
believe that the accuracy loss introduced by programmable switches
is acceptable. In summary, since the primary contribution of this
paper lies in presenting the problem of INA with route selection in
multi-PS architectures and designing two algorithms for solving
this problem, and the P4 implementation of InArt is similar to that
of existing works, relevant evaluation has been omitted.

	Abstract
	1 Introduction
	2 Motivation
	2.1 A Motivation Example
	2.2 Our Intuition

	3 Problem Definition
	3.1 System Model
	3.2 Problem Definition of InArt

	4 Algorithm Design
	4.1 Algorithm Workflow
	4.2 Algorithm Design for Splitting the Model
	4.3 Algorithm Design for INA and Routing

	5 Evaluation
	5.1 Performance Metrics and Benchmarks
	5.2 Testbed Evaluation
	5.3 Emulation Evaluation

	6 Conclusion and Future Work
	Acknowledgments
	References
	A Additional Evaluation Details
	A.1 Additional Testbed Evaluation
	A.2 Additional Emulation Evaluation

	B Discussion
	B.1 Multi-DT Job Scenarios
	B.2 Model Splitting Details
	B.3 RR Details of R-InArt
	B.4 Accuracy Loss Caused by INA

